Asymptotic rejection of persistent /spl Lscr//sub /spl infin//-bounded disturbances for nonlinear systems

Asymptotic properties of nonlinear /spl Lscr//sup 1/-control systems are characterized. The problem of designing a controller for a nonlinear system such that the resulting system starting from any initial state will eventually have /spl Lscr//sup 1/-performance is addressed. The Lyapunov technique is used in the analysis with a naturally defined nonsmooth Lyapunov function.

[1]  Wei-Min Lu Attenuation of persistent /spl Lscr//sub /spl infin//-bounded disturbances for nonlinear systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[2]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[3]  Franco Blanchini,et al.  Nonquadratic Lyapunov functions for robust control , 1995, Autom..

[4]  Franco Blanchini,et al.  Rational 𝓛1 suboptimal compensators for continuous-time systems , 1994, IEEE Trans. Autom. Control..

[5]  Yuandan Lin,et al.  Recent results on Lyapunov-theoretic techniques for nonlinear stability , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[6]  M. Kisielewicz Differential Inclusions and Optimal Control , 1991 .

[7]  Munther A. Dahleh,et al.  State feedback e 1 -optimal controllers can be dynamic , 1992 .

[8]  M. Dahleh,et al.  Control of Uncertain Systems: A Linear Programming Approach , 1995 .

[9]  D. Bertsekas Infinite time reachability of state-space regions by using feedback control , 1972 .

[10]  J. Shamma Optimization of the l∞-induced norm under full state feedback , 1996, IEEE Trans. Autom. Control..

[11]  J. Shamma Nonlinear state feedback for l 1 optimal control , 1993 .

[12]  Mathukumalli Vidyasagar,et al.  Optimal rejection of persistent bounded disturbances , 1986 .

[13]  Franco Blanchini,et al.  Rational L 1 Suboptimal Compensators for Continuous-Time Systems , 1993 .

[14]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[15]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .