Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate)

A study of MOF formation by grinding together solid reactants in a ball mill reveals interesting aspects of morphology and reactivity; the product could also be activated to exhibit appreciable surface area (>1300 m2 g−1) although washing with solvent was required.

[1]  S. James,et al.  Mechanochemical synthesis of homo- and hetero-rare-earth(III) metal–organic frameworks by ball milling , 2010 .

[2]  K. Fujii,et al.  Direct structure elucidation by powder X-ray diffraction of a metal-organic framework material prepared by solvent-free grinding. , 2010, Chemical communications.

[3]  M. Mehring,et al.  Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)] , 2010 .

[4]  T. Friščić,et al.  High reactivity of metal-organic frameworks under grinding conditions: parallels with organic molecular materials. , 2010, Angewandte Chemie.

[5]  A. Orpen,et al.  Coordination chemistry of platinum and palladium in the solid-state: synthesis of imidazole and pyrazole complexes. , 2010, Dalton transactions.

[6]  T. Friščić,et al.  Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. , 2010, Angewandte Chemie.

[7]  L. Fábián,et al.  One-pot mechanosynthesis with three levels of molecular self-assembly: coordination bonds, hydrogen bonds and host-guest inclusion. , 2009, Chemistry.

[8]  L. Fábián,et al.  Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG) , 2009 .

[9]  Stefan Kaskel,et al.  Characterization of metal-organic frameworks by water adsorption , 2009 .

[10]  R. Kuroda,et al.  Annealing assisted mechanochemical syntheses of transition-metal coordination compounds and co-crystal formation , 2009 .

[11]  William Jones,et al.  Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding , 2009 .

[12]  L. Qiu,et al.  Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method , 2009 .

[13]  David R. Weyna,et al.  Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs Slow Evaporation from Solution , 2009 .

[14]  R. Kuroda,et al.  Formation of 1 D and 3 D coordination polymers in the solid state induced by mechanochemical and annealing treatments: bis(3-cyano-pentane-2,4-dionato) metal complexes. , 2008, Chemistry.

[15]  A. Orpen,et al.  Solid state synthesis of coordination compounds from basic metal salts , 2008 .

[16]  S. James,et al.  An array-based study of reactivity under solvent-free mechanochemical conditions—insights and trends , 2008 .

[17]  V. K. Peterson,et al.  Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. , 2008, Angewandte Chemie.

[18]  F. Kapteijn,et al.  Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina , 2008 .

[19]  M. Hartmann,et al.  Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  N. Rodríguez-Hornedo,et al.  Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine , 2008 .

[21]  M. Hartmann,et al.  CW and Pulsed ESR Spectroscopy of Cupric Ions in the Metal−Organic Framework Compound Cu3(BTC)2 , 2008 .

[22]  Peter J. Dunn,et al.  Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation , 2008 .

[23]  R. Fischer,et al.  Deposition of microcrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers: evidence of surface selective and oriented growth , 2007 .

[24]  T. Bein,et al.  Oriented growth of the metal organic framework Cu(3)(BTC)(2)(H(2)O)(3).xH(2)O tunable with functionalized self-assembled monolayers. , 2007, Journal of the American Chemical Society.

[25]  Anne Pichon,et al.  Solvent-free synthesis of metal complexes. , 2007, Chemical Society reviews.

[26]  G. Day,et al.  Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. , 2007, Nature Materials.

[27]  A. Orpen,et al.  Solid-state interconversions of coordination networks and hydrogen-bonded salts. , 2007, Angewandte Chemie.

[28]  D. D. De Vos,et al.  Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). , 2006, Chemistry.

[29]  S. James,et al.  Solvent-free synthesis of a microporous metal–organic framework , 2006 .

[30]  S. Kaskel,et al.  Improved Hydrogen Storage in the Metal‐Organic Framework Cu3(BTC)2 , 2006 .

[31]  Ulrich Müller,et al.  Hydrogen Adsorption in Metal–Organic Frameworks: Cu‐MOFs and Zn‐MOFs Compared , 2006 .

[32]  D. Braga,et al.  Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks. , 2006, Dalton transactions.

[33]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[34]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[35]  J. Lercher,et al.  Metal organic frameworks based on Cu2+ and benzene-1,3,5-tricarboxylate as host for SO2 trapping agents , 2005 .

[36]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[37]  A. Skoulidas Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC. , 2004, Journal of the American Chemical Society.

[38]  G. Kaupp Solid-state molecular syntheses: complete reactions without auxiliaries based on the new solid-state mechanism , 2003 .

[39]  Qing Min Wang,et al.  Nanopore Structure and Sorption Properties of Cu-BTC Metal-Organic Framework , 2003 .

[40]  W. Jones,et al.  Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. , 2002, Chemical communications.

[41]  Qing Min Wang,et al.  Metallo-organic molecular sieve for gas separation and purification , 2002 .

[42]  Gareth W. V. Cave,et al.  Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. , 2001, Chemical communications.

[43]  G. Rothenberg,et al.  Understanding solid/solid organic reactions. , 2001, Journal of the American Chemical Society.

[44]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[45]  J. Fernández-bertran Mechanochemistry: an overview , 1999 .

[46]  T. Bein,et al.  High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1 , 2009 .

[47]  D. Braga,et al.  Simple and quantitative mechanochemical preparation of a porous crystalline material based on a 1D coordination network for uptake of small molecules. , 2005, Angewandte Chemie.

[48]  J. Steed,et al.  Engineering of porous π-stacked solids using mechanochemistry , 2001 .