Methodology of accelerated aging
暂无分享,去创建一个
R. L. Hartman | W. B. Joyce | F. R. Nash | K-Y. Liou | P. R. Bossard | W. Joyce | F. Nash | R. Hartman | P. Bossard | Kuen‐Ying Liou
[1] Joseph B. Brauer,et al. Microcircuit Accelerated Testing Using High Temperature Operating Tests , 1975, IEEE Transactions on Reliability.
[2] H. Kawano,et al. Rapid degradation of InGaAsP/InP double heterostructure lasers due to 〈110〉 dark line defect formation , 1982 .
[3] A. R. Eckler. A statistical approach to laser certification , 1985, AT&T Technical Journal.
[4] Naoki Chinone,et al. Acceleration of the gradual degradation in (GaAl)As double‐heterostructure lasers as an exponent of the value of the driving current , 1979 .
[5] M. Fukuda,et al. Stress tests on 1.3 μm buried-heterostructure laser diode , 1983 .
[6] K. Mizuishi. Statistical analysis of aging-induced degradation (or lifetime) variation in (Al, Ga)As/GaAs double-heterostructure lasers , 1983 .
[7] S.S. Clheng. Optimal Replacement Rate of Devices with Lognormal Failure Distributions , 1977, IEEE Transactions on Reliability.
[8] R. L. Hartman,et al. Selection of a laser reliability assurance strategy for a long-life application , 1985, AT&T Technical Journal.
[9] D. S. Peck,et al. The reliability of semiconductor devices in the bell system , 1974 .
[10] Edward B. Fowlkes,et al. Some Methods for Studying the Mixture of Two Normal (Lognormal) Distributions , 1979 .
[11] W. Joyce,et al. Thermal resistance of heterostructure lasers , 1975 .
[12] B. Hakki,et al. Catastrophic failure in GaAs double-heterostructure injection lasers , 1974 .
[13] M. Ettenberg,et al. Accelerated step-temperature aging of Al/x/Ga/1-x/As heterojunction laser diodes , 1978 .
[14] E.I. Gordon,et al. Purging: A reliability assurance technique for new technology semiconductor devices , 1983, IEEE Electron Device Letters.
[15] Hiroshi Ishikawa,et al. Accelerated aging test of Ga1−xAlxAs DH lasers , 1979 .
[16] B. Deloach,et al. Alignment of Gaussian beams. , 1984, Applied optics.
[17] Melville S. Green,et al. Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .
[18] C. M. Melliar-Smith,et al. Reliability and Failure Mechanisms of Electronic Materials , 1978 .
[19] W. O. Schlosser,et al. A Large Scale Reliability Study of Burnout Failure in GaAs Power FETs , 1980, 18th International Reliability Physics Symposium.
[20] W. B. Joyce,et al. Electrical derivative characteristics of InGaAsP buried heterostructure lasers , 1982 .
[21] D. Lang. Recombination-Enhanced Reactions in Semiconductors , 1982 .
[22] W. B. Joyce,et al. Statistical characterization of the lifetimes of continuously operated (Al,Ga)As double‐heterostructure lasers , 1976 .
[23] R. H. Saul,et al. Competing processes in long term accelerated aging of double heterostructure Ga1−xAlxAs light emitting diodes , 1982 .
[24] V. G. Keramidas,et al. High-temperature degradation of InGaAsP/InP light emitting diodes , 1981 .
[25] Melville S. Green,et al. Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena , 1952 .
[26] B. W. Hakki,et al. 1.3-µm Laser reliability determination for submarine cable systems , 1985, AT&T Technical Journal.
[27] F. Reynolds. Thermally accelerated aging of semiconductor components , 1974 .
[28] A. S. Jordan. A comprehensive review of the lognormal failure distribution with application to LED reliability , 1978 .
[29] Niloy K. Dutta,et al. Calculated temperature dependence of threshold current of GaAs‐AlxGa1−xAs double heterostructure lasers , 1981 .
[30] R. Dixon,et al. Accelerated aging and a uniform mode of degradation in (Al,Ga)As double-heterostructure lasers , 1977 .
[31] R. Dixon,et al. Reliability of DH GaAs lasers at elevated temperatures , 1975 .
[32] A. S. Jordan. Confidence limits on the failure rate and a rapid projection nomogram for the lognormal distribution , 1984 .
[33] P. A. Turner,et al. Electromigration of Ti–Au thin‐film conductors at 180° C , 1974 .
[34] B. W. Hakki,et al. Degradation of CW GaAs double-heterojunction lasers at 300 K , 1973 .