Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial ependymoma
暂无分享,去创建一个
David T. W. Jones | G. Reifenberger | K. Aldape | M. Gilbert | M. Kool | S. Pfister | P. Varlet | T. Acker | D. Schrimpf | U. Schüller | P. Wesseling | W. Wick | M. Snuderl | A. Vicha | D. Ellison | K. Pajtler | A. Korshunov | D. Capper | A. Deimling | K. Ichimura | M. Sill | M. Pages | C. Lavarino | S. Brandner | C. Mawrin | N. Jabado | S. Henneken | N. Akhtar | S. Rutkowski | R. Grundy | D. Sturm | K. Okonechnikov | D. Stichel | Z. Abdullaev | F. Sahm | L. Krsková | D. Reuss | P. Sievers | P. Harter | W. Mueller | L. Schweizer | T. Armstrong | K. Maass | P. Kohlhof-Meinecke | O. Cruz | V. Ruf | M. Kranendonk | R. Beschorner | H. Boldt | M. Suñol | Celso Pouget | H. Dohmen | J. Benzel | C. Blume | M. Zápotocký | Christina Blume | Julia Benzel | A. Deimling
[1] D. Parsons,et al. ZFTA-RELA Dictates Oncogenic Transcriptional Programs to Drive Aggressive Supratentorial Ependymoma. , 2021, Cancer discovery.
[2] T. Shibata,et al. Ependymoma‐like tumor with mesenchymal differentiation harboring C11orf95‐NCOA1/2 or ‐RELA fusion: A hitherto unclassified tumor related to ependymoma , 2021, Brain pathology.
[3] F. Andreiuolo,et al. Supratentorial ependymoma in childhood: more than just RELA or YAP , 2021, Acta Neuropathologica.
[4] S. Fröhling,et al. Accurate and efficient detection of gene fusions from RNA sequencing data , 2021, Genome research.
[5] M. Tartaglia,et al. Expanding the spectrum of EWSR1‐PATZ1 rearranged CNS tumors: An infantile case with leptomeningeal dissemination , 2020, Brain pathology.
[6] C. Antonescu,et al. Novel GATA6-FOXO1 Fusions in a Subset of Epithelioid Hemangioma , 2020, Modern Pathology.
[7] P. Varlet,et al. The EP300:BCOR fusion extends the genetic alteration spectrum defining the new tumoral entity of “CNS tumors with BCOR internal tandem duplication” , 2020, Acta neuropathologica communications.
[8] Marilyn M. Li,et al. The spectrum of rare central nervous system (CNS) tumors with EWSR1‐non‐ETS fusions: experience from three pediatric institutions with review of the literature , 2020, Brain pathology.
[9] Shih-Ming Huang,et al. Gene expression profiling identifies the role of Zac1 in cervical cancer metastasis , 2020, Scientific Reports.
[10] D. Nam,et al. Tumor edge-to-core transition promotes malignancy in primary-to-recurrent glioblastoma progression in a PLAGL1/CD109-mediated mechanism , 2020, bioRxiv.
[11] A. Iafrate,et al. Novel and established EWSR1 gene fusions and associations identified by next generation sequencing and fluorescence in-situ hybridization. , 2019, Human pathology.
[12] David T. W. Jones,et al. MYCN amplification drives an aggressive form of spinal ependymoma , 2019, Acta Neuropathologica.
[13] C. Fisher,et al. Mesenchymal Tumors with EWSR1 Gene Rearrangements. , 2019, Surgical pathology clinics.
[14] M. Kool,et al. Diagnostics of pediatric supratentorial RELA ependymomas: integration of information from histopathology, genetics, DNA methylation and imaging , 2018, Brain pathology.
[15] G. Reifenberger,et al. DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment , 2018, Neuro-oncology.
[16] Martin Sill,et al. Heterogeneity within the PF-EPN-B ependymoma subgroup , 2018, Acta Neuropathologica.
[17] David T. W. Jones,et al. EWSR1‐PATZ1 gene fusion may define a new glioneuronal tumor entity , 2018, Brain pathology.
[18] David T. W. Jones,et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas , 2018, Acta Neuropathologica.
[19] David T. W. Jones,et al. DNA methylation-based classification of central nervous system tumours , 2018, Nature.
[20] D. Johnston,et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome , 2017, Acta Neuropathologica.
[21] Mariella G. Filbin,et al. Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors , 2017, Neuro-oncology.
[22] J. Zugaza,et al. PLAGL1: an important player in diverse pathological processes , 2017, Journal of Applied Genetics.
[23] Stefan M. Pfister,et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets , 2016, Acta Neuropathologica.
[24] G. Reifenberger,et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.
[25] T. Tihan,et al. SOX10 Distinguishes Pilocytic and Pilomyxoid Astrocytomas From Ependymomas but Shows No Differences in Expression Level in Ependymomas From Infants Versus Older Children or Among Molecular Subgroups , 2016, Journal of neuropathology and experimental neurology.
[26] Z. Kmieć,et al. PLAGL1 (ZAC1/LOT1) Expression in Clear Cell Renal Cell Carcinoma: Correlations with Disease Progression and Unfavorable Prognosis. , 2016, Anticancer research.
[27] Gary D Bader,et al. Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. , 2015, Cancer cell.
[28] W. Huber,et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.
[29] Rafael A. Irizarry,et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..
[30] Li Ding,et al. C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma , 2014, Nature.
[31] Charmaine D. Wilson,et al. A prognostic gene expression signature in infratentorial ependymoma , 2012, Acta Neuropathologica.
[32] Gary D Bader,et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. , 2011, Cancer cell.
[33] Süleyman Cenk Sahinalp,et al. deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..
[34] S. Vandenberg,et al. OLIG2 is differentially expressed in pediatric astrocytic and in ependymal neoplasms , 2010, Journal of Neuro-Oncology.
[35] Hideo Nakamura,et al. Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. , 2009, Cancer research.
[36] C. Linardic. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. , 2008, Cancer letters.
[37] A. Abdollahi. LOT1 (ZAC1/PLAGL1) and its family members: Mechanisms and functions , 2007, Journal of cellular physiology.
[38] Dany Severac,et al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. , 2006, Developmental cell.
[39] F. Junyent,et al. Zac1 is expressed in progenitor/stem cells of the neuroectoderm and mesoderm during embryogenesis: Differential phenotype of the Zac1‐expressing cells during development , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.
[40] Catherine L Nutt,et al. The Oligodendroglial Lineage Marker OLIG2 Is Universally Expressed in Diffuse Gliomas , 2004, Journal of neuropathology and experimental neurology.
[41] Stefan M. Pfister,et al. Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions , 2019, Acta Neuropathologica.
[42] R. Barnard,et al. The classification of tumours of the central nervous system. , 1982, Neuropathology and applied neurobiology.