Modulation of hybrid organic–perovskite photovoltaic performance by controlling the excited dynamics of fullerenes

We present a synergistic approach to modulate organic–perovskite interfaces and their photovoltaic behaviors by tuning the properties of n-contact fullerenes layered atop of perovskite. Fullerenes with excited charge transfer are found to not only suppress fullerene photoluminescence, but also enhance molecular polarization and transport capabilities. This results in optimized perovskite–fullerene contact.

[1]  M. Cetron,et al.  Biodiesel production : a preliminary study from Jatropha Curcas , 2013 .

[2]  Tomas Leijtens,et al.  Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. , 2014, ACS nano.

[3]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[4]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[5]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[6]  Chang-Zhi Li,et al.  Polymer triplet energy levels need not limit photocurrent collection in organic solar cells. , 2012, Journal of the American Chemical Society.

[7]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[8]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[9]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[10]  A. Becke Density-functional thermochemistry. , 1996 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[13]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[14]  Yunlong Guo,et al.  Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer , 2014 .

[15]  Chun‐Sing Lee,et al.  Electronic Structures and Photoconversion Mechanism in Perovskite/Fullerene Heterojunctions , 2015 .

[16]  A. Jen,et al.  Enhanced Open‐Circuit Voltage in High Performance Polymer/Fullerene Bulk‐Heterojunction Solar Cells by Cathode Modification with a C60 Surfactant , 2012 .

[17]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[18]  R. Friend,et al.  The role of spin in the kinetic control of recombination in organic photovoltaics , 2013, Nature.

[19]  A. Jen,et al.  Suppressed Charge Recombination in Inverted Organic Photovoltaics via Enhanced Charge Extraction by Using a Conductive Fullerene Electron Transport Layer , 2014, Advanced materials.

[20]  A. Jen,et al.  Facile synthesis of a 56π-electron 1,2-dihydromethano-[60]PCBM and its application for thermally stable polymer solar cells. , 2011, Chemical communications.

[21]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[22]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[23]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[24]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[25]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[26]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[27]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[28]  A. Jen,et al.  Solution‐Processible Highly Conducting Fullerenes , 2013, Advanced materials.

[29]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[30]  M. Nazeeruddin,et al.  Metal‐Oxide‐Free Methylammonium Lead Iodide Perovskite‐Based Solar Cells: the Influence of Organic Charge Transport Layers , 2014 .

[31]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[32]  A. Jen,et al.  Evaluation of structure–property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance , 2012 .

[33]  A. Jen,et al.  A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullerene Derivatives as Electron Acceptor , 2009 .

[34]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[35]  R. Friend,et al.  Nanosecond Intersystem Crossing Times in Fullerene Acceptors: Implications for Organic Photovoltaic Diodes , 2014, Advanced materials.