Breaking the NTRU Public Key Cryptosystem Using Self-Assembly of DNA Tilings: Breaking the NTRU Public Key Cryptosystem Using Self-Assembly of DNA Tilings

[1]  John H. Reif,et al.  Successes and challenges , 2021, Strategic Community Partnerships, Philanthropy, and Nongovernmental Organization.

[2]  Erik Winfree,et al.  Two computational primitives for algorithmic self-assembly: copying and counting. , 2005, Nano letters.

[3]  J. Reif,et al.  DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[5]  Chris Hanson,et al.  Amorphous computing , 2000, Commun. ACM.

[6]  N. Seeman,et al.  Antiparallel DNA Double Crossover Molecules As Components for Nanoconstruction , 1996 .

[7]  Grzegorz Rozenberg,et al.  DNA computing by blocking , 2003, Theor. Comput. Sci..

[8]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[9]  N. Seeman,et al.  Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy , 1999 .

[10]  N. Seeman DNA nanotechnology: novel DNA constructions. , 1998, Annual review of biophysics and biomolecular structure.

[11]  J. Reif,et al.  Logical computation using algorithmic self-assembly of DNA triple-crossover molecules , 2000, Nature.

[12]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[13]  Yuriy Brun Nondeterministic polynomial time factoring in the tile assembly model , 2008, Theor. Comput. Sci..

[14]  Yuriy Brun Solving NP-complete problems in the tile assembly model , 2008, Theor. Comput. Sci..

[15]  Yuriy Brun Arithmetic computation in the tile assembly model: Addition and multiplication , 2007, Theor. Comput. Sci..