Nonlocality threshold for entanglement under general dephasing evolutions: a case study

Determining relationships between different types of quantum correlations in open composite quantum systems is important since it enables the exploitation of a type by knowing the amount of another type. We here review, by giving a formal demonstration, a closed formula of the Bell function, witnessing nonlocality, as a function of the concurrence, quantifying entanglement, valid for a system of two noninteracting qubits initially prepared in extended Werner-like states undergoing any local pure-dephasing evolution. This formula allows for finding nonlocality thresholds for the concurrence depending only on the purity of the initial state. We then utilize these thresholds in a paradigmatic system where the two qubits are locally affected by a quantum environment with an Ohmic class spectrum. We show that steady entanglement can be achieved and provide the lower bound of initial state purity such that this stationary entanglement is above the nonlocality threshold thus guaranteeing the maintenance of nonlocal correlations.

[1]  L. Aolita,et al.  Open-system dynamics of entanglement:a key issues review , 2014, Reports on progress in physics. Physical Society.

[2]  M. Markham,et al.  Demonstration of entanglement-by-measurement of solid-state qubits , 2012, Nature Physics.

[3]  G. Adesso,et al.  Unifying approach to the quantification of bipartite correlations by Bures distance , 2014, 1404.1409.

[4]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[5]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[6]  Karol Bartkiewicz,et al.  Entanglement estimation from Bell inequality violation , 2013, 1306.6504.

[7]  Frank Verstraete,et al.  Entanglement versus bell violations and their behavior under local filtering operations. , 2002, Physical review letters.

[8]  Zhong-Xiao Man,et al.  Cavity-based architecture to preserve quantum coherence and entanglement , 2015, Scientific Reports.

[9]  G. Compagno,et al.  An optimized Bell test in a dynamical system , 2010 .

[10]  Thi Ha Kyaw,et al.  Non-Markovian environments and entanglement preservation , 2010 .

[11]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[14]  Mauro Paternostro,et al.  Linear Optics Simulation of Quantum Non-Markovian Dynamics , 2012, Scientific Reports.

[15]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[16]  G. Compagno,et al.  Connection among entanglement, mixedness, and nonlocality in a dynamical context , 2010, 1003.5153.

[17]  Fabio Sciarrino,et al.  Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics , 2014, Scientific Reports.

[18]  N. Metwally NEW ASPECTS OF THE PURITY AND INFORMATION OF AN ENTANGLED QUBIT PAIR , 2008, 0803.2710.

[19]  B. Bellomo,et al.  Entanglement dynamics of two independent qubits in environments with and without memory , 2007, 0711.4799.

[20]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[21]  J. Ignacio Cirac,et al.  Quantum correlations in two-fermion systems , 2001 .

[22]  G. Falci,et al.  Recovering entanglement by local operations , 2012, 1207.3294.

[23]  L. Jakóbczyk,et al.  Clauser-Horne-Shimony-Holt violation and the entropy-concurrence plane , 2005 .

[24]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[25]  T. H. Johnson,et al.  Non-Markovianity of local dephasing channels and time-invariant discord , 2012, 1203.6469.

[26]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[27]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[28]  Sabrina Maniscalco,et al.  Coherence trapping and information backflow in dephasing qubits , 2013, 1311.0699.

[29]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[30]  S. Maniscalco,et al.  DYNAMICS OF QUANTUM CORRELATIONS IN TWO-QUBIT SYSTEMS WITHIN NON-MARKOVIAN ENVIRONMENTS , 2012, 1205.6419.

[31]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[33]  Adam Miranowicz,et al.  Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of entanglement for a given nonlocality , 2013, 1301.2969.

[34]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[35]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[36]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[37]  P. Horodecki,et al.  Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.

[38]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[39]  Giuseppe Compagno,et al.  Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling , 2014, 1408.6881.