Towards understanding two-level-systems in amorphous solids: insights from quantum circuits

Amorphous solids show surprisingly universal behaviour at low temperatures. The prevailing wisdom is that this can be explained by the existence of two-state defects within the material. The so-called standard tunneling model has become the established framework to explain these results, yet it still leaves the central question essentially unanswered - what are these two-level defects? This question has recently taken on a new urgency with the rise of superconducting circuits in quantum computing, circuit quantum electrodynamics, magnetometry, electrometry and metrology. Superconducting circuits made from aluminium or niobium are fundamentally limited by losses due to two-level defects within the amorphous oxide layers encasing them. On the other hand, these circuits also provide a novel and effective method for studying the very defects which limit their operation. We can now go beyond ensemble measurements and probe individual defects - observing the quantum nature of their dynamics and studying their formation, their behaviour as a function of applied field, strain, temperature and other properties. This article reviews the plethora of recent experimental results in this area and discusses the various theoretical models which have been used to describe the observations. In doing so, it summarises the current approaches to solving this fundamentally important problem in solid-state physics.

[1]  V. Lordi,et al.  Magnetic stability of oxygen defects on the SiO2 surface , 2017 .

[2]  J. Cole,et al.  Delocalized oxygen as the origin of two-level defects in Josephson junctions. , 2012, Physical review letters.

[3]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[4]  M. J. Kirton,et al.  Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/ƒ) noise , 1989 .

[5]  Jonas Zmuidzinas,et al.  Noise properties of superconducting coplanar waveguide microwave resonators , 2006, cond-mat/0609614.

[6]  Vijay Patel,et al.  Development toward high-speed integrated circuits and SQUID qubits with Nb/AlO/sub x//Nb Josephson junctions , 2003 .

[7]  M. Weides,et al.  Minimal resonator loss for circuit quantum electrodynamics , 2010, 1005.0408.

[8]  H. Terai,et al.  Superconducting qubits consisting of epitaxially grown NbN/AlN/NbN Josephson junctions , 2011 .

[9]  M. Weides,et al.  Magnons at low excitations: Observation of incoherent coupling to a bath of two-level systems , 2019, Physical Review Research.

[10]  Lara Faoro,et al.  Microscopic origin of low-frequency flux noise in josephson circuits. , 2008, Physical review letters.

[11]  T. Keyes,et al.  Anharmonic Potentials in Supercooled Liquids: The Soft-Potential Model , 1997 .

[12]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[13]  Dissipation due to two-level systems in nano-mechanical devices , 2006, cond-mat/0611153.

[14]  D. Barash,et al.  Nonhomogeneity of the density of states of tunneling two-level systems at low energies , 2013, 1311.2313.

[15]  P. Mohanty,et al.  Quantum friction of micromechanical resonators at low temperatures. , 2003, Physical review letters.

[16]  Siyuan Han,et al.  Entanglement dynamics of a superconducting phase qubit coupled to a two-level system , 2011, 1111.3016.

[17]  M. Siegel,et al.  Losses in coplanar waveguide resonators at millikelvin temperatures , 2009, 0910.0685.

[18]  J. Clarke,et al.  Nonequilibrium probing of two-level charge fluctuators using the step response of a single-electron transistor. , 2014, Physical review letters.

[19]  C. J. Mellor,et al.  Dissipation due to tunneling two-level systems in gold nanomechanical resonators , 2010 .

[20]  A. Ustinov,et al.  Probing individual tunneling fluctuators with coherently controlled tunneling systems , 2017, 1710.05883.

[21]  B. Halperin,et al.  Spectral diffusion, phonon echoes, and saturation recovery in glasses at low temperatures , 1977 .

[22]  C. Lobb,et al.  A Josephson junction defect spectrometer for measuring two-level systems , 2012, 1203.4431.

[23]  A. Burin,et al.  Theory of nonlinear microwave absorption by interacting two-level systems , 2018, Physical Review B.

[24]  M. Lukin,et al.  Polaronic model of two-level systems in amorphous solids , 2012, 1212.3299.

[25]  M. Tobar,et al.  Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature , 2012, 1202.4556.

[26]  Jay M. Gambetta,et al.  Improved superconducting qubit coherence using titanium nitride , 2013, 1303.4071.

[27]  John Clarke,et al.  Flicker (1/f) noise in tunnel junction dc SQUIDS , 1983 .

[28]  Yasunobu Nakamura,et al.  Hybrid quantum systems based on magnonics , 2019, Applied Physics Express.

[29]  J. Niemeyer,et al.  Observation of large dc supercurrents at nonzero voltages in Josephson tunnel junctions , 1976 .

[30]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[31]  M. Steffen,et al.  Josephson Junction Materials Research Using Phase Qubits , 2006 .

[32]  Xiao Liu,et al.  Low-temperature thermal conductivity and acoustic attenuation in amorphous solids , 2002 .

[33]  J. Rabalais,et al.  Composition and structure of the Al2O3{0001}-(1 × 1) surface , 1997 .

[34]  John M. Martinis,et al.  Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits , 2014, 1407.4769.

[35]  Jens Koch,et al.  Suppressing Charge Noise Decoherence in Superconducting Charge Qubits , 2007, 0712.3581.

[36]  Robert McDermott,et al.  Origin and Reduction of 1 / f Magnetic Flux Noise in Superconducting Devices , 2016 .

[37]  Matthias Steffen,et al.  Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout. , 2004, Physical review letters.

[38]  E. Lucero,et al.  Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.

[39]  L. Ioffe,et al.  Interacting tunneling model for two-level systems in amorphous materials and its predictions for their dephasing and noise in superconducting microresonators , 2014, 1404.2410.

[40]  H. Neven,et al.  Observation of Classical-Quantum Crossover of 1/f Flux Noise and Its Paramagnetic Temperature Dependence. , 2016, Physical review letters.

[41]  L. Faoro,et al.  Cross correlations between charge noise and critical-current fluctuations in a four-level tunable Josephson system , 2010 .

[42]  H. Neven,et al.  Fluctuations of Energy-Relaxation Times in Superconducting Qubits. , 2018, Physical review letters.

[43]  M. Steffen,et al.  Low Loss Superconducting Titanium Nitride Coplanar Waveguide Resonators , 2010, 1007.5096.

[44]  Matthew Neeley,et al.  Lifetime and coherence of two-level defects in a Josephson junction. , 2010, Physical review letters.

[45]  L. DiCarlo,et al.  Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates , 2015, 1502.04082.

[46]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[47]  K. Schwab,et al.  Optomechanical effects of two-level systems in a back-action evading measurement of micro-mechanical motion , 2013 .

[48]  Matthias Steffen Viewpoint: Superconducting Qubits Are Getting Serious , 2011 .

[49]  Siyuan Han,et al.  Rapid characterization of microscopic two-level systems using Landau-Zener transitions in a superconducting qubit , 2015 .

[50]  W. Oliver,et al.  Study of loss in superconducting coplanar waveguide resonators , 2010, 1010.6063.

[51]  Jonas Zmuidzinas,et al.  Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators , 2008, 0802.4457.

[52]  V. Lordi,et al.  Identification of the local sources of paramagnetic noise in superconducting qubit devices fabricated on α-Al2O3 substrates using density-functional calculations. , 2014, Physical review letters.

[53]  Clare C. Yu,et al.  Saturation of Two Level Systems and Charge Noise in Josephson Junction Qubits , 2008, 0810.1334.

[54]  R. Barends,et al.  Reduced frequency noise in superconducting resonators , 2010, 1005.5394.

[55]  L. Faoro,et al.  Analysis of high quality superconducting resonators: consequences for TLS properties in amorphous oxides , 2015, 1512.02553.

[56]  F. Wellstood,et al.  Projected Dipole Moments of Individual Two-Level Defects Extracted Using Circuit Quantum Electrodynamics. , 2015, Physical review letters.

[57]  J. Clarke,et al.  Low‐frequency noise in dc superconducting quantum interference devices below 1 K , 1987 .

[58]  P. Fulde,et al.  Influence of the Superconducting State upon the Low-Temperature Properties of Metallic Glasses , 1979 .

[59]  Yuriy Makhlin,et al.  Josephson-junction qubits with controlled couplings , 1999, Nature.

[60]  A. Ustinov,et al.  Strain Tuning of Individual Atomic Tunneling Systems Detected by a Superconducting Qubit , 2012, Science.

[61]  John Clarke,et al.  Magnetic flux noise in dc SQUIDs: temperature and geometry dependence. , 2013, Physical review letters.

[62]  Á. Rubio,et al.  Identification of structural motifs as tunneling two-level systems in amorphous alumina at low temperatures , 2014, 1411.0529.

[63]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[64]  A. Tzalenchuk,et al.  Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption , 2018, Nature Communications.

[65]  Yu.,et al.  Nonequilibrium dielectric behavior in glasses at low temperatures: Evidence for interacting defects. , 1994, Physical review. B, Condensed matter.

[66]  A. Burin,et al.  Random-Defect Laser: Manipulating Lossy Two-Level Systems to Produce a Circuit with Coherent Gain. , 2016, Physical review letters.

[67]  J. Lukens,et al.  Substrate and process dependent losses in superconducting thin film resonators , 2008 .

[68]  S. Zanker,et al.  Decoherence and Decay of Two-Level Systems Due to Nonequilibrium Quasiparticles , 2016, IEEE Transactions on Applied Superconductivity.

[69]  C. Musgrave,et al.  Bulk and surface tunneling hydrogen defects in alumina. , 2013, Physical review letters.

[70]  A. Leggett,et al.  "Tunneling two-level systems" model of the low-temperature properties of glasses: are "smoking-gun" tests possible? , 2013, The journal of physical chemistry. B.

[71]  J. Cole,et al.  Multiphoton spectroscopy of a hybrid quantum system , 2010, 1005.0773.

[72]  P. Wolynes,et al.  Electrodynamics of amorphous media at low temperatures , 2005, cond-mat/0506735.

[73]  S. Sarma,et al.  Quantum decoherence of a charge qubit in a spin-fermion model , 2008, 0803.3452.

[74]  M. Weides,et al.  Long-lived, radiation-suppressed superconducting quantum bit in a planar geometry , 2012, 1211.2017.

[75]  W. Oliver,et al.  Materials in superconducting quantum bits , 2013 .

[76]  Jared H. Cole,et al.  Rabi spectroscopy of a qubit-fluctuator system , 2009, 0909.3425.

[77]  P. Joyez,et al.  Decoherence in a superconducting quantum bit circuit , 2005 .

[78]  A. Würger From Coherent Tunneling to Relaxation , 1997 .

[79]  R. Buhrman,et al.  Oxygen stoichiometry and instability in aluminum oxide tunnel barrier layers , 2005, cond-mat/0501354.

[80]  Erik Lucero,et al.  Microwave dielectric loss at single photon energies and millikelvin temperatures , 2008, 0802.2404.

[81]  L. DiCarlo,et al.  High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field , 2015, 1511.01760.

[82]  D. Pappas,et al.  Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier , 2006 .

[83]  J. Brehm,et al.  Transmission-line resonators for the study of individual two-level tunneling systems , 2017, 1709.00381.

[84]  F. Wellstood,et al.  Anomalous avoided level crossings in a Cooper-pair box spectrum , 2008, 0810.2455.

[85]  Comparison of Ising spin glass noise to flux and inductance noise in SQUIDs. , 2010, Physical review letters.

[86]  John M. Martinis,et al.  A semiempirical model for two-level system noise in superconducting microresonators , 2008 .

[87]  John Clarke,et al.  Pure Dephasing in Flux Qubits due to Flux Noise with Spectral Density Scaling as 1/f(alpha) , 2011, 1111.7272.

[88]  M. Siegel,et al.  Investigation of Dielectric Losses in Hydrogenated Amorphoussilicon (a-Si:H) thin Films Using Superconducting Microwave Resonators , 2012 .

[89]  Yvonne Y Gao,et al.  Suspending superconducting qubits by silicon micromachining , 2016, 1606.02822.

[90]  J. Cole,et al.  Entangling microscopic defects via a macroscopic quantum shuttle , 2011, 1102.5037.

[91]  R. McDermott,et al.  Materials Origins of Decoherence in Superconducting Qubits , 2009, IEEE Transactions on Applied Superconductivity.

[92]  D. Cox,et al.  Near-Field Scanning Microwave Microscopy in the Single Photon Regime , 2019, Scientific Reports.

[93]  M. Steffen,et al.  Low-leakage superconducting tunnel junctions with a single-crystal Al2O3 barrier , 2005 .

[94]  J. Dunsmuir,et al.  Very small (⪸ 20 nm) lithographic wires, dots, rings, and tunnel junctions , 1988 .

[95]  C. Tai,et al.  Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions , 2016, Scientific Reports.

[96]  J. Cole,et al.  A 3D investigation of delocalised oxygen two-level defects in Josephson junctions , 2015, 1508.05204.

[97]  E. B. Magnusson,et al.  Surface acoustic wave resonators in the quantum regime , 2015, 1510.04965.

[98]  J. Gambetta,et al.  Investigating Surface Loss Effects in Superconducting Transmon Qubits , 2016, IEEE Transactions on Applied Superconductivity.

[99]  F. Hund Zur Deutung der Molekelspektren. III. , 1927 .

[100]  A. Zorin,et al.  Quantum dynamics in a camelback potential of a dc SQUID. , 2008, Physical review letters.

[101]  Stefano Poletto,et al.  Interacting two-level defects as sources of fluctuating high-frequency noise in superconducting circuits , 2015, 1503.01637.

[102]  A. Burin,et al.  Low-temperature1/fnoise in microwave dielectric constant of amorphous dielectrics in Josephson qubits , 2015, 1503.02646.

[103]  C. Deng,et al.  Characterization of low-temperature microwave loss of thin aluminum oxide formed by plasma oxidation , 2013, 1312.7362.

[104]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[105]  R. McDermott,et al.  Coherent Josephson phase qubit with a single crystal silicon capacitor , 2012, 1210.1545.

[106]  Wolf,et al.  Background charge noise in metallic single-electron tunneling devices. , 1996, Physical review. B, Condensed matter.

[107]  Wakai,et al.  Direct lifetime measurements and interactions of charged defect states in submicron Josephson junctions. , 1987, Physical review letters.

[108]  T Yamamoto,et al.  Quantum noise in the josephson charge qubit. , 2004, Physical review letters.

[109]  Jian Chen,et al.  Spectrum of a superconducting phase qubit coupled to a microscopic two-level system , 2014 .

[110]  P. Welander Structural evolution of Re (0001) thin films grown on Nb (110) surfaces by molecular beam epitaxy , 2010, 1008.4577.

[111]  A. Cleland,et al.  Quantum state characterization of a fast tunable superconducting resonator , 2013 .

[112]  Michael E. Tobar,et al.  High Q-factor sapphire whispering gallery mode microwave resonator at single photon energies and millikelvin temperatures , 2011, 1103.6094.

[113]  Flux qubits and readout device with two independent flux lines , 2005, cond-mat/0501679.

[114]  M. Prunnila,et al.  Dielectric losses in multi-layer Josephson junction qubits , 2012, 1206.1138.

[115]  R. Blatt,et al.  Ion-trap measurements of electric-field noise near surfaces , 2014, 1409.6572.

[116]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[117]  J. Halbritter,et al.  Transport in superconducting niobium films for radio frequency applications , 2005 .

[118]  Luke Gordon,et al.  Hydrogen bonds in Al2O3 as dissipative two-level systems in superconducting qubits , 2014, Scientific Reports.

[119]  W. Arnold,et al.  Experimental evidence for the direct interaction between two-level systems in glasses at very low temperatures , 1975 .

[120]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[121]  P. Stamp,et al.  Inversion symmetric two-level systems and the low-temperature universality in disordered solids , 2009, 0910.1283.

[122]  Schober,et al.  Anharmonic potentials and vibrational localization in glasses. , 1991, Physical review. B, Condensed matter.

[123]  Jonas Zmuidzinas,et al.  Temperature dependence of the frequency and noise of superconducting coplanar waveguide resonators , 2008 .

[124]  John M. Martinis,et al.  Implementing Qubits with Superconducting Integrated Circuits , 2004, Quantum Inf. Process..

[125]  C. Billman,et al.  Molecular dynamics modeling of mechanical loss in amorphous tantala and titania-doped tantala , 2016 .

[126]  P. Esquinazi,et al.  Tunneling Systems in Amorphous and Crystalline Solids , 1998 .

[127]  S. Girvin,et al.  0 40 73 25 v 1 1 3 Ju l 2 00 4 Circuit Quantum Electrodynamics : Coherent Coupling of a Single Photon to a Cooper Pair Box , 2022 .

[128]  P. Delsing,et al.  The atomic details of the interfacial interaction between the bottom electrode of Al/AlOx/Al Josephson junctions and HF-treated Si substrates , 2015 .

[129]  G. J. Dolan,et al.  Offset masks for lift‐off photoprocessing , 1977 .

[130]  A. Shnirman,et al.  Dynamical decoupling of quantum two-level systems by coherent multiple Landau–Zener transitions , 2019, npj Quantum Information.

[131]  M. Steffen,et al.  State tomography of capacitively shunted phase qubits with high fidelity. , 2006, Physical review letters.

[132]  V. A. Tulin,et al.  Evidence for interacting two-level systems from the 1/f noise of a superconducting resonator , 2013, Nature Communications.

[133]  The Microscopic Quantum Theory of Low Temperature Amorphous Solids , 2005, cond-mat/0506708.

[134]  A. Shnirman,et al.  Decoherence of a quantum two-level system by spectral diffusion , 2016, 1602.01453.

[135]  W. Milne,et al.  Observation and coherent control of interface-induced electronic resonances in a field-effect transistor. , 2017, Nature materials.

[136]  A. Tzalenchuk,et al.  Properties of superconducting planar resonators at millikelvin temperatures , 2009, 0905.1481.

[137]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[138]  Thomas Faust,et al.  Signatures of two-level defects in the temperature-dependent damping of nanomechanical silicon nitride resonators , 2013, 1310.3671.

[139]  M. Gurvitch,et al.  Critical current uniformity and stability of Nb/Al‐oxide‐Nb Josephson junctions , 1984 .

[140]  R. Buhrman,et al.  Defect interactions and noise in metallic nanoconstrictions. , 1988, Physical review letters.

[141]  J. Cole,et al.  Atomic delocalization as a microscopic origin of two-level defects in Josephson junctions , 2014, 1408.5687.

[142]  W. Niessen,et al.  Phonons and phonon localization in a − Si : Computational approaches and results for continuous-random-network-derived structures , 1998 .

[143]  R. Barends,et al.  Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators , 2013, 1306.2966.

[144]  Lianyu Yu Amorphous Solids , 2018, Polymorphism in Pharmaceutical Solids.

[145]  A. Brunoa,et al.  Investigation of dielectric losses in hydrogenated amorphous silicon (a-Si:H) thin films using superconducting microwave resonators , 2013 .

[146]  B. Laird,et al.  Localized low-frequency vibrational modes in a simple model glass. , 1991, Physical review letters.

[147]  A V Ustinov,et al.  Temperature dependence of coherent oscillations in Josephson phase qubits. , 2007, Physical review letters.

[148]  D. DiVincenzo,et al.  Dephasing of a superconducting qubit induced by photon noise. , 2005, Physical review letters.

[149]  A. Kitaev,et al.  Quasiparticle poisoning and Josephson current fluctuations induced by Kondo impurities. , 2008, Physical review letters.

[150]  John M Martinis,et al.  Decoherence in josephson phase qubits from junction resonators. , 2004, Physical review letters.

[151]  M. Weissman 1/f noise and other slow, nonexponential kinetics in condensed matter. , 1988 .

[152]  Models of environment and T1 relaxation in Josephson charge qubits. , 2004, Physical review letters.

[153]  John Clarke,et al.  Model for 1/f Flux noise in SQUIDs and Qubits. , 2007, Physical review letters.

[154]  Blake R. Johnson,et al.  Coherence in a transmon qubit with epitaxial tunnel junctions , 2011, 1111.5083.

[155]  F. Wellstood,et al.  Landau-Zener population control and dipole measurement of a two-level-system bath , 2013, 1312.4865.

[156]  R. Schoelkopf,et al.  Relaxation and frequency shifts induced by quasiparticles in superconducting qubits , 2011, 1106.0829.

[157]  Complete stabilization and improvement of the characteristics of tunnel junctions by thermal annealing , 2006, cond-mat/0611664.

[158]  A. Tzalenchuk,et al.  Direct Identification of Dilute Surface Spins on Al_{2}O_{3}: Origin of Flux Noise in Quantum Circuits. , 2016, Physical review letters.

[159]  J. Jäckle On the ultrasonic attenuation in glasses at low temperatures , 1972 .

[160]  A. Marx,et al.  Loss mechanisms in superconducting thin film microwave resonators , 2015, 1510.05957.

[161]  B. Arey,et al.  Fabrication artifacts and parallel loss channels in metamorphic epitaxial aluminum superconducting resonators , 2016 .

[162]  F. Wellstood,et al.  Spectroscopy of a Cooper-pair box coupled to a two-level system via charge and critical current , 2013, 1305.3962.

[163]  Clare C Yu,et al.  Microscopic model of critical current noise in Josephson junctions. , 2007, Physical review letters.

[164]  T. M. Klapwijk,et al.  Noise and Sensitivity of Aluminum Kinetic Inductance Detectors for Sub-mm Astronomy , 2008 .

[165]  W. A. Phillips,et al.  Tunneling states in amorphous solids , 1972 .

[166]  John M. Martinis,et al.  Fluctuations from edge defects in superconducting resonators , 2013, 1306.3718.

[167]  K. B. Whaley,et al.  Microscopic model of critical current noise in Josephson-junction qubits: Subgap resonances and Andreev bound states , 2009, 0906.5169.

[168]  Zijun Chen,et al.  Fabrication and characterization of aluminum airbridges for superconducting microwave circuits , 2013, 1310.2325.

[169]  A. Shnirman,et al.  Decoherence spectroscopy with individual two-level tunneling defects , 2016, Scientific Reports.

[170]  J. Cole,et al.  Measuring the temperature dependence of individual two-level systems by direct coherent control. , 2010, Physical review letters.

[171]  S. Saito,et al.  Dephasing of a superconducting flux qubit. , 2007, Physical review letters.

[172]  A. Heuer,et al.  What is moving in silica at 1 K? A computer study of the low-temperature anomalies. , 2005, Physical review letters.

[173]  Mark Harris,et al.  Dynamics of silica glass: two-level tunnelling states and low-energy floppy modes , 2000 .

[174]  J. Bylander,et al.  Noise and loss of superconducting aluminium resonators at single photon energies , 2018, 1801.10204.

[175]  J. Eckstein,et al.  Reduced leakage current in Josephson tunnel junctions with codeposited barriers , 2008, 0812.3636.

[176]  L. Ioffe,et al.  Damping in high-frequency metallic nanomechanical resonators , 2010, 1001.4612.

[177]  E. Rubiola,et al.  Phase Noise and Frequency Stability in Oscillators , 2008 .

[178]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[179]  C. Strunk,et al.  Fabrication artifacts and parallel loss channels in metamorphic epitaxial aluminum superconducting resonators , 2016 .

[180]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[181]  Decoherence of a Josephson qubit due to coupling to two-level systems , 2004, cond-mat/0409006.

[182]  A. Lupascu,et al.  One- and two-photon spectroscopy of a flux qubit coupled to a microscopic defect , 2008, 0810.0590.

[183]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[184]  Ming Xu,et al.  Inhibition of insulin resistance by PGE1 via autophagy-dependent FGF21 pathway in diabetic nephropathy , 2018, Scientific Reports.

[185]  Alexander Bogicevic,et al.  Cu interactions with α-Al2O3(0001): effects of surface hydroxyl groups versus dehydroxylation by Ar-ion sputtering , 2000 .

[186]  T. Briant,et al.  Probing a Two-Level System Bath via the Frequency Shift of an Off-Resonantly Driven Cavity , 2018, Physical Review Applied.

[187]  M. Neeley Process Tomography of Quantum Memory in a Josephson Phase Qubit , 2008 .

[188]  P. Delsing,et al.  Decoherence benchmarking of superconducting qubits , 2019, npj Quantum Information.

[189]  Correlating the nanostructure of Al-oxide with deposition conditions and dielectric contributions of two-level systems in perspective of superconducting quantum circuits , 2017, Scientific Reports.

[190]  A. Tzalenchuk,et al.  Suppression of 1/f noise in solid state quantum devices by surface spin desorption , 2017, 1705.09158.

[191]  M. Siegel,et al.  Probing the density of states of two-level tunneling systems in silicon oxide films using superconducting lumped element resonators , 2015 .

[192]  A. Tzalenchuk,et al.  Pound-locking for characterization of superconducting microresonators. , 2011, The Review of scientific instruments.

[193]  P. M. Horn,et al.  Low-frequency fluctuations in solids: 1/f noise , 1981 .

[194]  M. Huber,et al.  Spinlike susceptibility of metallic and insulating thin films at low temperature. , 2009, Physical review letters.

[195]  D. Rosenberg,et al.  Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators , 2017, 1709.10015.

[196]  G. C. Hilton,et al.  Strongly quadrature-dependent noise in superconducting micro-resonators measured at the vacuum-noise limit , 2010, 1008.0046.

[197]  Multilevel spectroscopy of two-level systems coupled to a dc SQUID phase qubit , 2010, 1003.3941.

[198]  Masoud Mohseni,et al.  Commercialize quantum technologies in five years , 2017, Nature.

[199]  John M Martinis,et al.  Magnetism in SQUIDs at millikelvin temperatures. , 2008, Physical review letters.

[200]  C. Nugroho,et al.  Low frequency resistance and critical current fluctuations in Al-based Josephson junctions , 2013, 1302.6175.

[201]  F. Wellstood,et al.  Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state , 2014, 1405.0264.

[202]  Matthias Steffen,et al.  Superconducting Qubits Are Getting Serious , 2011 .

[203]  John Clarke,et al.  Decoherence in Josephson-Junction Qubits due to Critical Current Fluctuations , 2004 .

[204]  G. Falci,et al.  1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.

[205]  V. Karpov,et al.  Atomic tunneling states and low-temperature anomalies of thermal properties in amorphous materials , 1982 .

[206]  Blake R. Johnson,et al.  Sub-micrometer epitaxial Josephson junctions for quantum circuits , 2011, 1108.1830.

[207]  P. Nalbach,et al.  Nonuniversality and strongly interacting two-level systems in glasses at low temperatures , 2018, New Journal of Physics.

[208]  John M. Martinis,et al.  Superconducting phase qubits , 2009, Quantum Inf. Process..

[209]  J. Cole,et al.  Constructing ab initio models of ultra-thin Al–AlOx–Al barriers , 2015, 1503.01859.

[210]  N. H. Williams,et al.  Electromagnetic Waves of 1.1 cm Wave-Length and the Absorption Spectrum of Ammonia , 1934 .

[211]  Localization and the glass transition , 1996 .

[212]  L. Ioffe,et al.  Internal loss of superconducting resonators induced by interacting two-level systems. , 2012, Physical review letters.

[213]  A. Leggett,et al.  Universal sound absorption in amorphous solids: A theory of elastically coupled generic blocks , 2011, 1103.5530.

[214]  Joakim Bergli,et al.  Decoherence of a qubit due to either a quantum fluctuator, or classical telegraph noise , 2012, 1206.2174.

[215]  R. L. Badzey,et al.  Quantum friction in nanomechanical oscillators at millikelvin temperatures , 2005, cond-mat/0603691.

[216]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[217]  R. Barends,et al.  Contribution of dielectrics to frequency and noise of NbTiN superconducting resonators , 2008, 0804.3499.

[218]  H. B. Weber,et al.  Mechanically controlled tunneling of a single atomic defect , 2001 .

[219]  Why Study Noise Due to Two Level Systems: A Suggestion for Experimentalists , 2004, cond-mat/0409008.

[220]  Enrico Rubiola,et al.  The Leeson effect - Phase noise in quasilinear oscillators , 2005 .

[221]  R. J. Schoelkopf,et al.  Phase-preserving amplification near the quantum limit with a Josephson ring modulator , 2009, Nature.

[222]  R. Barends,et al.  Qubit metrology of ultralow phase noise using randomized benchmarking , 2014, 1411.2613.

[223]  Relaxation of Josephson qubits due to strong coupling to two-level systems , 2009, 0905.2332.

[224]  J. E. Mooij,et al.  Relaxation and Dephasing in a Flux-qubit , 2004 .

[225]  G. Lippi,et al.  Polarization-resolved cartography of light emission of a vertical-cavity surface-emitting laser with high space and frequency resolution , 2015 .

[226]  M. Weides,et al.  Improving the Coherence Time of Superconducting Coplanar Resonators , 2009, 0909.0547.

[227]  Revealing the nonlinear response of a tunneling two-level system ensemble using coupled modes , 2017, 1702.08240.

[228]  M. Weides,et al.  Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. , 2019, Physical review letters.

[229]  M. Allman,et al.  Vacuum-Gap Capacitors for Low-Loss Superconducting Resonant Circuits , 2008, IEEE Transactions on Applied Superconductivity.

[230]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[231]  J. Cole,et al.  Observation of directly interacting coherent two-level systems in an amorphous material , 2015, Nature Communications.

[232]  S. Zanker,et al.  Electronic Decoherence of Two-Level Systems in a Josephson Junction , 2016, 1609.06173.

[233]  Franco Nori,et al.  Quantum two-level systems in Josephson junctions as naturally formed qubits. , 2006, Physical review letters.

[234]  Matthias Imboden,et al.  Dissipation in nanoelectromechanical systems , 2014 .

[235]  Luigi Frunzio,et al.  Surface participation and dielectric loss in superconducting qubits , 2015, 1509.01854.

[236]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[237]  Yuriy Makhlin,et al.  Low- and high-frequency noise from coherent two-level systems. , 2005, Physical review letters.

[238]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[239]  Tobias J. Kippenberg,et al.  Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state , 2010, 1011.0290.

[240]  Localization of metal-induced gap states at the metal-insulator interface: origin of flux noise in SQUIDs and superconducting qubits. , 2009, Physical review letters.

[241]  J. Cole,et al.  Quantitative evaluation of defect-models in superconducting phase qubits , 2010, 1010.6037.

[242]  D. Osheroff,et al.  Interactions Between Tunneling Defects in Amorphous Solids , 1998 .

[243]  I. Pop,et al.  Fabrication of stable and reproducible submicron tunnel junctions , 2011, 1105.6204.

[244]  Michael S. Allman,et al.  Low-loss superconducting resonant circuits using vacuum-gap-based microwave components , 2010 .

[245]  Jiansong Gao,et al.  Two Level System Loss in Superconducting Microwave Resonators , 2011, IEEE Transactions on Applied Superconductivity.

[246]  S. Paschen,et al.  Two-channel Kondo effect in glasslike ThAsSe. , 2005, Physical review letters.

[247]  L. Pauling The Rotational Motion of Molecules in Crystals , 1930 .

[248]  I. Martin,et al.  Low temperature mechanical dissipation of an ion-beam sputtered silica film , 2014 .

[249]  M. Steffen,et al.  Chapter 1 JOSEPHSON JUNCTION MATERIALS RESEARCH USING PHASE QUBITS , 2004 .

[250]  A. C. Anderson,et al.  Amorphous Solids: Low-Temperature Properties , 1981 .

[251]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[252]  J. Martinis,et al.  Decoherence in josephson phase qubits from junction resonators. , 2004, Physical review letters.

[253]  A. Shnirman,et al.  Tunneling spectroscopy of two-level systems inside a Josephson junction. , 2005, Physical review letters.

[254]  J M Gambetta,et al.  Measurement-induced qubit state mixing in circuit QED from up-converted dephasing noise. , 2012, Physical review letters.

[255]  M. Weides,et al.  Etch induced microwave losses in titanium nitride superconducting resonators , 2012, 1205.3153.

[256]  J. Gambetta,et al.  Bulk and surface loss in superconducting transmon qubits , 2015, 1509.03859.

[257]  W A Phillips Two-level states in glasses , 1987 .

[258]  Coppersmith Frustrated interactions and tunneling: Two-level systems in glasses. , 1991, Physical review letters.

[259]  Kevin Osborn,et al.  Coherent interactions between phase qubits, cavities, and TLS defects , 2009, Quantum Inf. Process..

[260]  M. Imboden,et al.  Evidence of universality in the dynamical response of micromechanical diamond resonators at millikelvin temperatures , 2008, 0803.1669.

[261]  Candidate Source of Flux Noise in SQUIDs: Adsorbed Oxygen Molecules. , 2015, Physical review letters.

[262]  C. T. White,et al.  On the origin of the universal dielectric response in condensed matter , 1979, Nature.

[263]  Markus Aspelmeyer,et al.  Focus on Mechanical Systems at the Quantum Limit , 2008 .

[264]  C. R. Helms,et al.  The silicon-silicon dioxide system: Its microstructure and imperfections , 1994 .

[265]  Erik Lucero,et al.  Surface loss simulations of superconducting coplanar waveguide resonators , 2011, 1107.4698.

[266]  F. Hellman,et al.  Hydrogen-free amorphous silicon with no tunneling states. , 2014, Physical review letters.

[267]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[268]  L. Kador,et al.  Spectrally resolved analysis of fluorescence blinking of single dye molecules in polymers at low temperatures. , 2012, The Journal of chemical physics.