Area Inequalities for Embedded Disks Spanning Unknotted Curves
暂无分享,去创建一个
[1] F. Almgren,et al. Optimal isoperimetric inequalities , 1985 .
[2] F. Morgan. Geometric Measure Theory: A Beginner's Guide , 1988 .
[3] Jeffrey C. Lagarias,et al. The computational complexity of knot and link problems , 1999, JACM.
[4] W. Reid. The Isoperimetric Inequality and Associated Boundary Problems , 1959 .
[5] T. O’Neil. Geometric Measure Theory , 2002 .
[6] I. Holopainen. Riemannian Geometry , 1927, Nature.
[7] R. Courant. On the Problem of Plateau. , 1936, Proceedings of the National Academy of Sciences of the United States of America.
[8] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[9] Eric J. Rawdon,et al. Thickness of knots , 1999 .
[10] J. Douglas. Solution of the problem of Plateau , 1931 .
[11] Bernard Chazelle,et al. Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..
[12] J. Lagarias,et al. The Minimal Number of Triangles Needed to Span a Polygon Embedded in ℝd , 2003 .
[13] Jeffrey C. Lagarias,et al. The computational complexity of knot and link problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[14] G. Buck,et al. Thickness and crossing number of knots , 1999 .
[15] L. Bianchi. Vorlesungen über Differentialgeometrie I , 1899 .
[17] Robert Gulliver,et al. Regularity of Minimizing Surfaces of Prescribed Mean Curvature , 1973 .
[18] E. Beckenbach,et al. Subharmonic functions and surfaces of negative curvature , 1933 .
[19] Robert Osserman,et al. A Proof of the Regularity Everywhere of the Classical Solution to Plateau's Problem , 1970 .
[20] Jason H. Cantarella,et al. On the minimum ropelength of knots and links , 2001, math/0103224.
[21] R. Osserman. The isoperimetric inequality , 1978 .
[22] David Avis,et al. Triangulating point sets in space , 1987, Discret. Comput. Geom..
[23] J. Lagarias,et al. The number of Reidemeister moves needed for unknotting , 1998, math/9807012.