Environment Matters: Synaptic Properties of Neurons Born in the Epileptic Adult Brain Develop to Reduce Excitability

[1]  Henrik Ahlenius,et al.  Tumor Necrosis Factor Receptor 1 Is a Negative Regulator of Progenitor Proliferation in Adult Hippocampal Neurogenesis , 2006, The Journal of Neuroscience.

[2]  K. Unsicker,et al.  Regional- and Age-Dependent Reduction in trkB Receptor Expression in the Hippocampus Is Associated with Altered Spine Morphologies , 2006, Biological Psychiatry.

[3]  G. Westbrook,et al.  Seizures Accelerate Functional Integration of Adult-Generated Granule Cells , 2006, The Journal of Neuroscience.

[4]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-α , 2006, Nature.

[5]  Hongjun Song,et al.  GABA regulates synaptic integration of newly generated neurons in the adult brain , 2006, Nature.

[6]  D. Kullmann,et al.  Epileptogenesis is associated with enhanced glutamatergic transmission in the perforant path. , 2006, Journal of neurophysiology.

[7]  O. Lindvall,et al.  Long‐term neuronal replacement in adult rat hippocampus after status epilepticus despite chronic inflammation , 2006, The European journal of neuroscience.

[8]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.

[9]  Chunmei Zhao,et al.  Distinct Morphological Stages of Dentate Granule Neuron Maturation in the Adult Mouse Hippocampus , 2006, The Journal of Neuroscience.

[10]  N. Barbaro,et al.  Aberrant seizure‐induced neurogenesis in experimental temporal lobe epilepsy , 2006, Annals of neurology.

[11]  F. Gage,et al.  Neurogenic niche modulation by activated microglia: transforming growth factor β increases neurogenesis in the adult dentate gyrus , 2006, The European journal of neuroscience.

[12]  P. Kostyuk,et al.  Differential properties of GABAergic synaptic connections in rat hippocampal cell cultures , 2004, Journal of Physiology-Paris.

[13]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-alpha. , 2006, Nature.

[14]  H. Scharfman Seizure-Induced Neurogenesis in the Dentate Gyrus and its Dependence on Growth Factors and Cytokines , 2006 .

[15]  C. Henneberger,et al.  Brain-derived neurotrophic factor modulates GABAergic synaptic transmission by enhancing presynaptic glutamic acid decarboxylase 65 levels, promoting asynchronous release and reducing the number of activated postsynaptic receptors , 2005, Neuroscience.

[16]  Michael Wong,et al.  Modulation of dendritic spines in epilepsy: Cellular mechanisms and functional implications , 2005, Epilepsy & Behavior.

[17]  A. F. Schinder,et al.  Neuronal Differentiation in the Adult Hippocampus Recapitulates Embryonic Development , 2005, The Journal of Neuroscience.

[18]  M. Pickering,et al.  Actions of TNF‐α on glutamatergic synaptic transmission in the central nervous system , 2005 .

[19]  H. Okano,et al.  Increased number of neural progenitors in human temporal lobe epilepsy , 2005, Neurobiology of Disease.

[20]  F. Dudek,et al.  Changes in mIPSCs and sIPSCs after kainate treatment: evidence for loss of inhibitory input to dentate granule cells and possible compensatory responses. , 2005, Journal of neurophysiology.

[21]  S. Green,et al.  Regulation of hippocampal synapse remodeling by epileptiform activity , 2005, Molecular and Cellular Neuroscience.

[22]  P. Eriksson,et al.  Extended voluntary running inhibits exercise-induced adult hippocampal progenitor proliferation in the spontaneously hypertensive rat. , 2005, Journal of neurophysiology.

[23]  D. Abrous,et al.  Adult Neurogenesis : From Precursors to Network and Physiology , 2005 .

[24]  H. Scharfman,et al.  Growth factors and epilepsy , 2005 .

[25]  M. Pickering,et al.  Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system. , 2005, Experimental physiology.

[26]  A. Shetty,et al.  Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus , 2004, Neurobiology of Disease.

[27]  R. Cuppini,et al.  Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus , 2004, Brain Research.

[28]  P. Jonas,et al.  Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus , 2004, Nature.

[29]  M. Low,et al.  A Transgenic Marker for Newly Born Granule Cells in Dentate Gyrus , 2004, The Journal of Neuroscience.

[30]  O. Lindvall,et al.  Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus , 2004, Neurobiology of Disease.

[31]  Hiroki Toda,et al.  Inflammatory Blockade Restores Adult Hippocampal Neurogenesis , 2003, Science.

[32]  J. Loturco,et al.  Electrophysiological Differentiation of New Neurons in the Olfactory Bulb , 2003, The Journal of Neuroscience.

[33]  O. Lindvall,et al.  Inflammation is detrimental for neurogenesis in adult brain , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  T. Dugladze,et al.  Kindling alters entorhinal cortex-hippocampal interaction by increased efficacy of presynaptic GABAb autoreceptors in layer III of the entorhinal cortex , 2003, Neurobiology of Disease.

[35]  Alan Carleton,et al.  Becoming a new neuron in the adult olfactory bulb , 2003, Nature Neuroscience.

[36]  D. Coulter,et al.  Dentate granule cell GABAA receptors in epileptic hippocampus: enhanced synaptic efficacy and altered pharmacology , 2003, The European journal of neuroscience.

[37]  Masayuki Kobayashi,et al.  Reduced Inhibition of Dentate Granule Cells in a Model of Temporal Lobe Epilepsy , 2003, The Journal of Neuroscience.

[38]  Jack M Parent,et al.  Rat forebrain neurogenesis and striatal neuron replacement after focal stroke , 2002, Annals of neurology.

[39]  O. Lindvall,et al.  Neuronal replacement from endogenous precursors in the adult brain after stroke , 2002, Nature Medicine.

[40]  H. Scharfman,et al.  Spontaneous recurrent seizures after pilocarpine-induced status epilepticus activate calbindin-immunoreactive hilar cells of the rat dentate gyrus , 2002, Neuroscience.

[41]  F. Gage,et al.  Functional neurogenesis in the adult hippocampus , 2002, Nature.

[42]  F. Dudek,et al.  Excitatory synaptic input to granule cells increases with time after kainate treatment. , 2001, Journal of neurophysiology.

[43]  H. Scharfman,et al.  Granule-Like Neurons at the Hilar/CA3 Border after Status Epilepticus and Their Synchrony with Area CA3 Pyramidal Cells: Functional Implications of Seizure-Induced Neurogenesis , 2000, The Journal of Neuroscience.

[44]  E. Gould,et al.  Rapid extension of axons into the CA3 region by adult‐generated granule cells , 1999, The Journal of comparative neurology.

[45]  W. Wadman,et al.  Miniature inhibitory postsynaptic currents in CA1 pyramidal neurons after kindling epileptogenesis. , 1999, Journal of neurophysiology.

[46]  I. Módy,et al.  Decreased sensitivity to Group III mGluR agonists in the lateral perforant path following kindling , 1999, Neuropharmacology.

[47]  M. Poo,et al.  Synaptic reliability correlates with reduced susceptibility to synaptic potentiation by brain-derived neurotrophic factor. , 1999, Learning & memory.

[48]  F. Gage,et al.  Adult‐generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles , 1999, The Journal of comparative neurology.

[49]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[50]  I Khalilov,et al.  GABA is the principal fast-acting excitatory transmitter in the neonatal brain. , 1999, Advances in neurology.

[51]  O. Lindvall,et al.  Endogenous Neurotrophin-3 Regulates Short-Term Plasticity at Lateral Perforant Path–Granule Cell Synapses , 1998, The Journal of Neuroscience.

[52]  D. Coulter,et al.  Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy , 1998, Nature Medicine.

[53]  Peter Somogyi,et al.  Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses , 1998, Nature.

[54]  D. Kullmann,et al.  Long-term potentiation and dual-component quantal signaling in the dentate gyrus. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  I. Módy,et al.  Enhanced propagation of epileptiform activity through the kindled dentate gyrus. , 1998, Journal of neurophysiology.

[56]  Chiping Wu,et al.  Partial Hippocampal Kindling Decreases Efficacy of Presynaptic GABAB Autoreceptors in CA1 , 1997, The Journal of Neuroscience.

[57]  C. Chavkin,et al.  Spontaneous excitatory currents and kappa-opioid receptor inhibition in dentate gyrus are increased in the rat pilocarpine model of temporal lobe epilepsy. , 1997, Journal of neurophysiology.

[58]  D. Geschwind,et al.  Dentate Granule Cell Neurogenesis Is Increased by Seizures and Contributes to Aberrant Network Reorganization in the Adult Rat Hippocampus , 1997, The Journal of Neuroscience.

[59]  D. Coulter,et al.  Differential epilepsy-associated alterations in postsynaptic GABA(A) receptor function in dentate granule and CA1 neurons. , 1997, Journal of neurophysiology.

[60]  T. Sejnowski,et al.  Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses , 1997, Neuron.

[61]  William Slikker,et al.  Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration , 1997, Brain Research.

[62]  D Debanne,et al.  Paired‐pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. , 1996, The Journal of physiology.

[63]  I. Módy,et al.  Zinc-Induced Collapse of Augmented Inhibition by GABA in a Temporal Lobe Epilepsy Model , 1996, Science.

[64]  M. Dichter,et al.  Paired pulse depression in cultured hippocampal neurons is due to a presynaptic mechanism independent of GABAB autoreceptor activation , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  R. Malinow,et al.  The probability of transmitter release at a mammalian central synapse , 1993, Nature.

[66]  Christian Rosenmund,et al.  Nonuniform probability of glutamate release at a hippocampal synapse. , 1993, Science.

[67]  I. Módy,et al.  Characterization of synaptically elicited GABAB responses using patch‐clamp recordings in rat hippocampal slices. , 1993, The Journal of physiology.

[68]  R. Malenka,et al.  Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro. , 1993, Journal of neurophysiology.

[69]  B. Gustafsson,et al.  Long‐term Potentiation and Field EPSPs in the Lateral and Medial Perforant Paths in the Dentate Gyrus In Vitro: a Comparison , 1992, The European journal of neuroscience.

[70]  H. Scharfman,et al.  Differentiation of rat dentate neurons by morphology and electrophysiology in hippocampal slices: granule cells, spiny hilar cells and aspiny 'fast-spiking' cells. , 1992, Epilepsy research. Supplement.

[71]  S N Davies,et al.  Paired‐pulse depression of monosynaptic GABA‐mediated inhibitory postsynaptic responses in rat hippocampus. , 1990, The Journal of physiology.

[72]  Edward H Bertram,et al.  Self-sustaining limbic status epilepticus induced by ‘continuous’ hippocampal stimulation: electrographic and behavioral characteristics , 1989, Epilepsy Research.

[73]  O. Steward,et al.  Chronic epileptogenesis induced by kindling of the entorhinal cortex: the role of the dentate gyrus , 1986, Brain Research.

[74]  R. Zucker,et al.  Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[76]  B. L. McNaughton,et al.  Evidence for two physiologically distinct perforant pathways to the fascia dentata , 1980, Brain Research.