A Marginalized Particle Gaussian Process Regression
暂无分享,去创建一个
[1] Carl E. Rasmussen,et al. Robust Filtering and Smoothing with Gaussian Processes , 2012, IEEE Transactions on Automatic Control.
[2] Dieter Fox,et al. GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[3] Thomas B. Schön,et al. Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.
[4] R. Kass,et al. Bayesian curve-fitting with free-knot splines , 2001 .
[5] Steven Reece,et al. An introduction to Gaussian processes for the Kalman filter expert , 2010, 2010 13th International Conference on Information Fusion.
[6] Roger M. Goodall,et al. Estimation of parameters in a linear state space model using a Rao-Blackwellised particle filter , 2004 .
[7] Carl E. Rasmussen,et al. Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..
[8] Marc Peter Deisenroth,et al. Efficient reinforcement learning using Gaussian processes , 2010 .
[9] Radford M. Neal. Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.
[10] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[11] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[12] Iain Murray. Introduction To Gaussian Processes , 2008 .
[13] Nando de Freitas,et al. Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.
[14] N. de Freitas. Rao-Blackwellised particle filtering for fault diagnosis , 2002, Proceedings, IEEE Aerospace Conference.
[15] Arnaud Doucet,et al. An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .
[16] Sally Wood,et al. Bayesian mixture of splines for spatially adaptive nonparametric regression , 2002 .