A Marginalized Particle Gaussian Process Regression

We present a novel marginalized particle Gaussian process (MPGP) regression, which provides a fast, accurate online Bayesian filtering framework to model the latent function. Using a state space model established by the data construction procedure, our MPGP recursively filters out the estimation of hidden function values by a Gaussian mixture. Meanwhile, it provides a new online method for training hyperparameters with a number of weighted particles. We demonstrate the estimated performance of our MPGP on both simulated and real large data sets. The results show that our MPGP is a robust estimation algorithm with high computational efficiency, which outperforms other state-of-art sparse GP methods.

[1]  Carl E. Rasmussen,et al.  Robust Filtering and Smoothing with Gaussian Processes , 2012, IEEE Transactions on Automatic Control.

[2]  Dieter Fox,et al.  GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[4]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[5]  Steven Reece,et al.  An introduction to Gaussian processes for the Kalman filter expert , 2010, 2010 13th International Conference on Information Fusion.

[6]  Roger M. Goodall,et al.  Estimation of parameters in a linear state space model using a Rao-Blackwellised particle filter , 2004 .

[7]  Carl E. Rasmussen,et al.  Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..

[8]  Marc Peter Deisenroth,et al.  Efficient reinforcement learning using Gaussian processes , 2010 .

[9]  Radford M. Neal Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.

[10]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[11]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[12]  Iain Murray Introduction To Gaussian Processes , 2008 .

[13]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[14]  N. de Freitas Rao-Blackwellised particle filtering for fault diagnosis , 2002, Proceedings, IEEE Aerospace Conference.

[15]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[16]  Sally Wood,et al.  Bayesian mixture of splines for spatially adaptive nonparametric regression , 2002 .