Nonlinear structure‐enhancing filtering using plane‐wave prediction *

Attenuation of random noise and enhancement of structural continuity can significantly improve the quality of seismic interpretation. We present a new technique, which aims at reducing random noise while protecting structural information. The technique is based on combining structure prediction with either similarity-mean filtering or lower-upper-middle filtering. We use structure prediction to form a structural prediction of seismic traces from neighbouring traces. We apply a non-linear similarity-mean filter or an lower-upper-middle filter to select best samples from different predictions. In comparison with other common filters, such as mean or median, the additional parameters of the non-linear filters allow us to better control the balance between eliminating random noise and protecting structural information. Numerical tests using synthetic and field data show the effectiveness of the proposed structure-enhancing filters.

[1]  Gary F. Margrave,et al.  Median filtering in Kirchhoff migration for noisy data , 2000 .

[2]  Antoine Guitton,et al.  Regularizing seismic inverse problems by model reparameterization using plane-wave construction , 2006 .

[3]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[4]  D. N. Whitcombe,et al.  Structurally Consistent Filtering , 2006 .

[5]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[6]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[7]  Sergey Fomel Predictive painting of 3-D seismic volumes a , 2008 .

[8]  Mohamed Rashed Smart stacking A new CMP stacking technique for seismic data , 2008 .

[9]  W. Harry Mayne,et al.  Common Reflection Point Horizontal Data Stacking Techniques , 1962 .

[10]  Yaxun Tang,et al.  Selective stacking in the reflection‐angle and azimuth domain , 2007 .

[11]  Yang Liu,et al.  A 2D multistage median filter to reduce random seismic noise , 2006 .

[12]  S. Fomel,et al.  Shaping regularization in geophysical-estimation problems , 2007 .

[13]  Russell C. Hardie,et al.  LUM filters: a class of rank-order-based filters for smoothing and sharpening , 1993, IEEE Trans. Signal Process..

[14]  Yi Luo,et al.  3D edge-preserving smoothing and applications3D edge-preserving smoothing , 2006 .

[15]  Yi Luo,et al.  3D edge-preserving smoothing and applications , 2002 .

[16]  J. Claerbout Earth Soundings Analysis: Processing Versus Inversion , 1992 .

[17]  D. Hale Structure-oriented smoothing and semblance , 2009 .

[18]  Yann Traonmilin,et al.  Structurally Consistent F-x Filtering , 2008 .

[19]  Gijs C. Fehmers,et al.  Fast structural interpretation with structure-oriented filtering , 2002 .

[20]  G. Fehmers,et al.  Fast structural interpretation with structure-oriented filteringStructure-Oriented Filtering , 2003 .

[21]  John W. C. Robinson STATISTICALLY OPTIMAL STACKING OF SEISMIC DATA , 1970 .

[22]  Rongfeng Zhang,et al.  Multiple Suppression Based On the Migration Operator And a Hyperbolic Median Filter , 2003 .

[23]  Yuriy Tyapkin,et al.  Optimum stacking of seismic records with irregular noise , 2005 .

[24]  Sergey Fomel Local seismic attributes , 2006 .

[25]  B I Justusson,et al.  Median Filtering: Statistical Properties , 1981 .

[26]  Guochang Liu,et al.  Stacking seismic data using local correlation , 2009 .

[27]  P.K. Rajan,et al.  Two-dimensional digital signal processing II: Transforms and median filters , 1982, Proceedings of the IEEE.

[28]  Henning Hoeber,et al.  Frequency Dependent, Structurally Conformable Filtering , 2008 .

[29]  Yang Liu,et al.  A 1D time-varying median filter for seismic random, spike-like noise elimination , 2009 .

[30]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).