Multiobjective Genetic Algorithm for Bicriteria Network Design Problems

Network design is one of the most important and most frequently encountered classes of optimization problems. However, various network optimization problems typically cannot be solved by a generalized approach. Usually we must design the different algorithm for the different type of network optimization problem depending on the characteristics of the problem. In this paper, we try to investigate with a broad spectrum of multi-criteria network design models, analyze the recent related researches, design and validate new effective multiobjective hybrid genetic algorithms for three kinds of major bicriteria network design models: bicriteria shortest path (bSP) model, bicriteria minimum spanning tree (bST) model and bicriteria network flow (bNF) model. Because of the adaptability, robustness and flexibility of the evolutionary algorithms, proposed approaches are easy applied to many kinds of real applications extended from these major network design models.

[1]  R. Ravi,et al.  Bicriteria Network Design Problems , 1998, J. Algorithms.

[2]  David W. Corne,et al.  A new evolutionary approach to the degree-constrained minimum spanning tree problem , 1999, IEEE Trans. Evol. Comput..

[3]  Vojtech Bálint The non-approximability of bicriteria network design problems , 2003, J. Discrete Algorithms.

[4]  Hee Yong Youn,et al.  GAPS: The Genetic Algorithm-based Path Selection Scheme for MPLS Network , 2007, 2007 IEEE International Conference on Information Reuse and Integration.

[5]  Dingwei Wang,et al.  Genetic algorithms for solving shortest path problems , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[6]  Mitsuo Gen,et al.  Network design techniques using adapted genetic algorithms , 2001 .

[7]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[8]  Kim Allan Andersen,et al.  A label correcting approach for solving bicriterion shortest-path problems , 2000, Comput. Oper. Res..

[9]  Chang Wook Ahn,et al.  A genetic algorithm for shortest path routing problem and the sizing of populations , 2002, IEEE Trans. Evol. Comput..

[10]  Di Yuan,et al.  A bicriteria optimization approach for robust OSPF routing , 2003, Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM 2003) (IEEE Cat. No.03EX764).

[11]  Mitsuo Gen,et al.  Evolution program for resource constrained project scheduling problem , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[12]  Wu Wei,et al.  A gene-constrained genetic algorithm for solving shortest path problem , 2004, Proceedings 7th International Conference on Signal Processing, 2004. Proceedings. ICSP '04. 2004..

[13]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[14]  P. Simin Pulat,et al.  Bicriteria network flow problems: Continuous case , 1991 .

[15]  Mitsuo Gen,et al.  An Effective Evolutionary Approach for Bicriteria Shortest Path Routing Problems , 2008 .

[16]  Xin Yao,et al.  Progress in Evolutionary Computation , 1995, Lecture Notes in Computer Science.

[17]  Amir Azaron,et al.  Bicriteria shortest path in networks of queues , 2006, Appl. Math. Comput..

[18]  Bryant A. Julstrom,et al.  Edge sets: an effective evolutionary coding of spanning trees , 2003, IEEE Trans. Evol. Comput..

[19]  Miki Haseyama,et al.  A genetic algorithm for determining multiple routes and its applications , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[20]  Cícero Garrozi,et al.  Multiobjective Genetic Algorithm for Multicast Routing , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[21]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[22]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Martin Maier,et al.  Erratum to "A genetic algorithm-based methodology for optimizing multiservice convergence in a metro WDM network" , 2003 .

[25]  Francis Suraweera,et al.  Encoding Graphs for Genetic Algorithms: An Investigation Using the Minimum Spanning Tree Problem , 1994, Evo Workshops.

[26]  Lawrence Davis,et al.  A Genetic Algorithm for Survivable Network Design , 1993, International Conference on Genetic Algorithms.

[27]  Guangjun Liu,et al.  A Specific Genetic Algorithm for Optimum Path Planning in Intelligent Transportation System , 2006, 2006 6th International Conference on ITS Telecommunications.

[28]  Bryant A. Julstrom,et al.  Greedy heuristics and an evolutionary algorithm for the bounded-diameter minimum spanning tree problem , 2003, SAC '03.

[29]  Masaharu Munetomo,et al.  An Adaptive Network Routing Algorithm Employing Path Genetic Operators , 1997, ICGA.

[30]  Ashraf S. Hasan Mahmoud,et al.  A Heuristic Genetic Algorithm for the Single Source Shortest Path Problem , 2007, 2007 IEEE/ACS International Conference on Computer Systems and Applications.

[31]  Franz Rothlauf,et al.  Evolution Strategies, Network Random Keys, and the One-Max Tree Problem , 2002, EvoWorkshops.

[32]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[33]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[34]  G. Chakraborty,et al.  Multiobjective route selection for car navigation system using genetic algorithm , 2005, Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05..

[35]  Mitsuo Gen,et al.  A genetic algorithm approach to the bi-criteria allocation of customers to warehouses , 2003 .

[36]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[37]  Zhaowang Ji,et al.  Finding multi-objective paths in stochastic networks: a simulation-based genetic algorithm approach , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[38]  Franz Rothlauf,et al.  On the Optimal Communication Spanning Tree Problem , 2003 .

[39]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[40]  Michael O. Ball,et al.  Bicriteria product design optimization: An efficient solution procedure using AND/OR trees , 2002 .

[41]  Mitsuo Gen,et al.  Genetic algorithms and engineering optimization , 1999 .