Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease

Recently, several genome-wide association studies (GWASs) have led to the discovery of nine new loci of genetic susceptibility in Alzheimer's disease (AD). However, the landscape of the AD genetic susceptibility is far away to be complete and in addition to single-SNP (single-nucleotide polymorphism) analyses as performed in conventional GWAS, complementary strategies need to be applied to overcome limitations inherent to this type of approaches. We performed a genome-wide haplotype association (GWHA) study in the EADI1 study (n=2025 AD cases and 5328 controls) by applying a sliding-windows approach. After exclusion of loci already known to be involved in AD (APOE, BIN1 and CR1), 91 regions with suggestive haplotype effects were identified. In a second step, we attempted to replicate the best suggestive haplotype associations in the GERAD1 consortium (2820 AD cases and 6356 controls) and observed that 9 of them showed nominal association. In a third step, we tested relevant haplotype associations in a combined analysis of five additional case–control studies (5093 AD cases and 4061 controls). We consistently replicated the association of a haplotype within FRMD4A on Chr.10p13 in all the data set analyzed (OR: 1.68; 95% CI: (1.43–1.96); P=1.1 × 10−10). We finally searched for association between SNPs within the FRMD4A locus and Aβ plasma concentrations in three independent non-demented populations (n=2579). We reported that polymorphisms were associated with plasma Aβ42/Aβ40 ratio (best signal, P=5.4 × 10−7). In conclusion, combining both GWHA study and a conservative three-stage replication approach, we characterised FRMD4A as a new genetic risk factor of AD.

M Mancuso | R Ferri | P. Bosco | M. Owen | Y. Kamatani | G. Spalletta | L. Fratiglioni | H. Soininen | F. Pasquier | L. Buée | J. Dartigues | D. Trégouët | C. Broeckhoven | K. Sleegers | M. Lathrop | D. Zélénika | D. Harold | R. Sims | A. Gerrish | K. Bettens | J. Lambert | P. Amouyel | S. Sorbi | C. Reitz | C. Tzourio | A. Alpérovitch | M. Breteler | D. Campion | M. Hiltunen | O. Combarros | M. Bullido | C. Berr | I. Mateo | V. Álvarez | M. Mancuso | F. Panza | B. Nacmias | P. Bossù | G. Annoni | D. Seripa | D. Galimberti | D. Hannequin | M. Ikram | E. Scarpini | M. Riemenschneider | L. Lannfelt | B. Grenier‐Boley | V. Chouraki | A. Pilotto | M. Ingelsson | E. Coto | C. Graff | C. Reynolds | J. Prince | L. Concari | V. Solfrizzi | G. Siciliano | R. Ferri | A. Boland | G. Tosto | J. Williams | M. Owen | E. Schrijvers | J. Dartigues | C. van Broeckhoven | J. Epelbaum | Julie Williams | J. Chapman | T. Feulner | M. Delepine | B. Arosio | F. Valdivieso | C. Chillotti | H Soininen | M Lathrop | M Riemenschneider | L Fratiglioni | M. Del Zompo | V Solfrizzi | F Panza | C Berr | V Alvarez | E Coto | A Alpérovitch | G Spalletta | P Bossù | F Pasquier | G Siciliano | C. Van Cauwenberghe | L Lannfelt | C Van Cauwenberghe | J-C Lambert | K Bettens | P Amouyel | K Sleegers | C Van Broeckhoven | D Harold | B Grenier-Boley | R Sims | V Chouraki | D Zelenika | A Boland | D Campion | D Hannequin | J-F Dartigues | C Tzourio | J Williams | F Valdivieso | Y Kamatani | M Owen | J Epelbaum | L Buée | M. Breteler | G Tosto | M Hiltunen | C Graff | S Sorbi | J A Prince | D Seripa | P Bosco | D Galimberti | E Scarpini | B Nacmias | M A Ikram | C Reitz | I Mateo | T Feulner | M Bullido | L Concari | A Gerrish | J Chapman | C Deniz-Naranjo | B Arosio | E M C Schrijvers | R Rogers | M Delepine | C A Reynolds | M Ingelsson | C Chillotti | A Pilotto | G Annoni | F Sanchez-Garcia | M Del Zompo | M O'Donovan | P Caffara | O Combarros | M Breteler | D-A Trégouët | M. O'Donovan | C. Deniz-Naranjo | R. Rogers | P. Caffara | C. V. Cauwenberghe | F. Pasquier | M. Lathrop | F. Sánchez‐garcía | M. Mancuso | L. Buée | M. Zompo | M. Riemenschneider | M. O’Donovan | R. Ferri

[1]  D. G. Clark,et al.  Common variants in MS4A4/MS4A6E, CD2uAP, CD33, and EPHA1 are associated with late-onset Alzheimer’s disease , 2011, Nature Genetics.

[2]  P. Mehta,et al.  Amyloid β protein 1–40 and 1–42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease , 2001, Neuroscience Letters.

[3]  Nick C Fox,et al.  Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease , 2011, Nature Genetics.

[4]  Sudha Seshadri,et al.  Genome-wide analysis of genetic loci associated with Alzheimer disease. , 2010, JAMA.

[5]  Thomas W. Mühleisen,et al.  Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease , 2013, Nature Genetics.

[6]  P. Mehta,et al.  Amyloid beta protein 1-40 and 1-42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. , 2001, Neuroscience letters.

[7]  J. Lambert,et al.  Genetics of Alzheimer's disease: new evidences for an old hypothesis? , 2011, Current opinion in genetics & development.

[8]  Martin Ingelsson,et al.  The Alzheimer's Disease-Associated Amyloid \(\beta\)-Protein Is an Antimicrobial Peptide , 2010 .

[9]  L. Kiemeney,et al.  Corrigendum: Genetic variation in the prostate stem cell antigen gene PSCA confers susceptibility to urinary bladder cancer , 2009, Nature Genetics.

[10]  Ulrich Tepass,et al.  FERM proteins in animal morphogenesis. , 2009, Current opinion in genetics & development.

[11]  Mikio Shoji,et al.  Age-Dependent Changes in Brain, CSF, and Plasma Amyloid β Protein in the Tg2576 Transgenic Mouse Model of Alzheimer's Disease , 2001, The Journal of Neuroscience.

[12]  D. Tregouet,et al.  In-Depth Haplotype Analysis of ABCA1 Gene Polymorphisms in Relation to Plasma ApoA1 Levels and Myocardial Infarction , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[13]  C I Amos,et al.  Detecting haplotype effects in genomewide association studies , 2007, Genetic epidemiology.

[14]  S. M. Sumi,et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) , 1991, Neurology.

[15]  Terri H Beaty,et al.  A graphical assessment of p-values from sliding window haplotype tests of association to identify asthma susceptibility loci on chromosome 11q , 2006, BMC Genetics.

[16]  C. Patlak,et al.  Fate of Cerebrospinal Fluid‐Borne Amyloid β‐Peptide: Rapid Clearance into Blood and Appreciable Accumulation by Cerebral Arteries , 1996, Journal of neurochemistry.

[17]  Scott A. Small,et al.  Linking Aβ and Tau in Late-Onset Alzheimer's Disease: A Dual Pathway Hypothesis , 2008, Neuron.

[18]  Benjamin J. Wright,et al.  Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease , 2009, Nature Genetics.

[19]  J. Casanova,et al.  Regulation of dendritic development by the ARF exchange factor ARNO , 2002, Nature Neuroscience.

[20]  K. Blennow,et al.  Standardization of measurement of β-amyloid(1-42) in cerebrospinal fluid and plasma , 2000, Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis.

[21]  B. Hyman,et al.  The Alzheimer's Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide , 2010, PloS one.

[22]  M. Umeda,et al.  FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex , 2009, Proceedings of the National Academy of Sciences.

[23]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease: Report of the NINCDS—ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease , 2011, Neurology.

[24]  A. Hofman,et al.  Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. , 2006, The Lancet. Neurology.

[25]  L. Buée,et al.  Association of plasma amyloid β with risk of dementia , 2009, Neurology.

[26]  Nick C Fox,et al.  Letter abstract - Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's Disease , 2009 .

[27]  M. Owen,et al.  Genome-wide linkage analysis of 723 affected relative pairs with late-onset Alzheimer's disease. , 2007, Human molecular genetics.

[28]  Philippe Amouyel,et al.  Genetic heterogeneity of Alzheimer's disease: Complexity and advances , 2007, Psychoneuroendocrinology.

[29]  B. de Strooper,et al.  ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1 , 2011, Proceedings of the National Academy of Sciences.

[30]  A. Hofman,et al.  Plasma Aβ1–40 and Aβ1–42 and the risk of dementia: a prospective case-cohort study , 2006, The Lancet Neurology.

[31]  Jean-François Dartigues,et al.  Association of Plasma Aß Peptides with Blood Pressure in the Elderly , 2011, PloS one.

[32]  B. Hyman,et al.  The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimer's disease , 2007, Neuroscience Letters.

[33]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[34]  P. Bosco,et al.  Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease , 2009, Nature Genetics.

[35]  J. Becker,et al.  Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study , 2008, Neurology.

[36]  Zhaoxia Yu,et al.  Sequential haplotype scan methods for association analysis , 2007, Genetic epidemiology.

[37]  D. Tregouet,et al.  A new algorithm for haplotype‐based association analysis: the Stochastic‐EM algorithm , 2004, Annals of human genetics.

[38]  Fabrizio Gagliardi,et al.  Building an infrastructure for scientific Grid computing: status and goals of the EGEE project , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  D. A. Tregouet,et al.  A new JAVA interface implementation of THESIAS: testing haplotype effects in association studies , 2007, Bioinform..

[40]  Lorena Za,et al.  ADP-ribosylation factor 6 and a functional PIX/p95-APP1 complex are required for Rac1B-mediated neurite outgrowth. , 2003, Molecular biology of the cell.

[41]  P. Bosco,et al.  APOE and Alzheimer disease: a major gene with semi-dominant inheritance , 2011, Molecular Psychiatry.