Effective Temperature Estimations from Line Depth Ratios in the H- and K-band Spectra of IGRINS

Determining accurate effective temperatures of stars buried in the dust-obscured Galactic regions is extremely difficult from photometry. Fortunately, high-resolution infrared spectroscopy is a powerful tool for determining the temperatures of stars with no dependence on interstellar extinction. It has long been known that the depth ratios of temperature-sensitive and relatively insensitive spectral lines are excellent temperature indices. In this work, we provide the first extensive line depth ratio (LDR) method application in the infrared region that encompasses both the H and K bands (1.48 μm − 2.48 μm). We applied the LDR method to high-resolution (R ≃ 45,000) H- and K-band spectra of 110 stars obtained with the Immersion Grating Infrared Spectrograph. Our sample contained stars with 3200 < T eff (K) < 5500, 0.20 ≤ log g < 4.6, and −1.5 < [M/H] < 0.5. The application of this method in the K band yielded 21 new LDR–T eff relations. We also report five new LDR–T eff relations found in the H-band region, augmenting the relations already published by other groups. The temperatures found from our calibrations provide reliable temperatures within ∼70 K accuracy compared to spectral T eff values from the literature.

[1]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[2]  Pablo Vera Alfaro,et al.  THE SEVENTEENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEYS: COMPLETE RELEASE OF MANGA, MASTAR AND APOGEE-2 DATA , 2022 .

[3]  N. Matsunaga,et al.  Line-depth ratios as indicators of effective temperature and surface gravity , 2021, 2106.09995.

[4]  D. Massari,et al.  Exploiting the Gaia eDR3 photometry to derive stellar temperatures , 2021, Astronomy & Astrophysics.

[5]  E. A. Den Hartog,et al.  Atomic Transition Probabilities of Neutral Calcium , 2021, 2105.10534.

[6]  James E. Lawler,et al.  Linemake: An Atomic and Molecular Line List Generator , 2021, Research Notes of the AAS.

[7]  A. Arai,et al.  The effect of surface gravity on line-depth ratios in the wavelength range 0.97–1.32 µm , 2020, Monthly Notices of the Royal Astronomical Society.

[8]  Aurora Y. Kesseli,et al.  Effective Temperatures of Low-mass Stars from High-resolution H-band Spectroscopy , 2019, The Astrophysical Journal.

[9]  G. Mace,et al.  Chemical abundances of open clusters from high-resolution infrared spectra – II. NGC 752 , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  K. Fukue,et al.  The metallicity effect on line-depth ratios in APOGEE H-band spectra , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  G. Mace,et al.  IGRINS Spectral Library , 2018, The Astrophysical Journal Supplement Series.

[12]  Van Hoof,et al.  Recent Development of the Atomic Line List , 2018 .

[13]  C. Sneden,et al.  A Spectroscopic Survey of Field Red Horizontal-branch Stars , 2018, 1804.04477.

[14]  Naoto Kobayashi,et al.  Method to estimate the effective temperatures of late-type giants using line-depth ratios in the wavelength range 0.97-1.32 μm , 2017, 1710.04674.

[15]  M. Tsantaki,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu , 2017, 1705.04349.

[16]  F. Matteucci,et al.  Abundances of disk and bulge giants from high-resolution optical spectra , 2019, Astronomy & Astrophysics.

[17]  R. E. Luck ABUNDANCES IN THE LOCAL REGION. II. F, G, AND K DWARFS AND SUBGIANTS , 2016, 1611.02897.

[18]  H. Rocha-Pinto,et al.  Homogeneous abundance analysis of FGK dwarf, subgiant, and giant stars with and without giant planets , 2015, 1505.01726.

[19]  H. C. Stempels,et al.  A major upgrade of the VALD database , 2015 .

[20]  C. Prieto,et al.  THE SDSS-III APOGEE SPECTRAL LINE LIST FOR H-BAND SPECTROSCOPY , 2015, 1502.04080.

[21]  C. Sneden,et al.  The chemical compositions and evolutionary status of red giants in the open cluster NGC 752 , 2014, 1411.7608.

[22]  C. Saffe,et al.  Stellar parameters and chemical abundances of 223 evolved stars with and without planets , 2014, 1410.6422.

[23]  Jeong-Yeol Han,et al.  Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer) , 2014, Astronomical Telescopes and Instrumentation.

[24]  R. E. Luck PARAMETERS AND ABUNDANCES IN LUMINOUS STARS , 2014 .

[25]  José A. Gómez Hernández,et al.  Gaia FGK benchmark stars: Metallicity , 2013, 1309.1099.

[26]  C. Eiroa,et al.  The metallicity signature of evolved stars with planets , 2013, 1303.3418.

[27]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[28]  H. Tabernero,et al.  Chemically tagging the Hyades Supercluster - A homogeneous sample of F6-K4 kinematically selected northern stars , 2012, 1205.4879.

[29]  M. Koleva,et al.  Stellar population models in the UV. I. Characterisation of the New Generation Stellar Library , 2011, 1111.5449.

[30]  J. Jenkins,et al.  Study of the impact of the post-MS evolution of the host star on the orbits of close-in planets - I. Sample definition and physical properties , 2011, 1110.6459.

[31]  L. KuruczRobert Including all the lines11This article is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas. , 2011 .

[32]  P. Prugniel,et al.  The atmospheric parameters and spectral interpolator for the MILES stars , 2011, 1104.4952.

[33]  In-Soo Yuk,et al.  Preliminary design of IGRINS (Immersion GRating INfrared Spectrograph) , 2010, Astronomical Telescopes + Instrumentation.

[34]  D. Lambert,et al.  Accurate fundamental parameters for A-, F- and G-type Supergiants in the solar neighbourhood , 2009, 0911.1335.

[35]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[36]  P. Bonifacio,et al.  A new implementation of the infrared flux method using the 2MASS catalogue , 2009, 0901.3034.

[37]  B. Sato,et al.  Stellar Parameters and Elemental Abundances of Late-G Giants , 2008, 0805.2434.

[38]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[39]  S. Hekker,et al.  Precise radial velocities of giant stars. III. Spectroscopic stellar parameters , 2007, 0709.1145.

[40]  O. Bienaymé,et al.  High-precision effective temperatures of 215 FGK giants from line-depth ratios , 2006 .

[41]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[42]  E. Masana,et al.  Effective temperature scale and bolometric corrections from 2MASS photometry , 2006, astro-ph/0601049.

[43]  B. Sato,et al.  Spectroscopic Study on the Atmospheric Parameters of Nearby F-K Dwarfs and Subgiants , 2005 .

[44]  C. Soubiran,et al.  High precision effective temperatures for 181 F-K dwarfs from line-depth ratios ?;?? , 2003, astro-ph/0308429.

[45]  U. Heiter,et al.  New grids of ATLAS9 atmospheres I: Influence of convection treatments on model structure and on observable quantities , 2002, astro-ph/0206156.

[46]  D. F. Gray,et al.  Line‐Depth Ratios: Temperature Indices for Giant Stars , 2001 .

[47]  Beatriz Barbuy,et al.  Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands , 1999, astro-ph/9908296.

[48]  S. Arribas,et al.  Determination of effective temperatures for an extended sample of dwarfs and subdwarfs (F0-K5) , 1996 .

[49]  R. E. Luck,et al.  Chemical Abundances for Very Strong-Lined Giants , 1995 .

[50]  David F. Gray,et al.  SPECTRAL LINE-DEPTH RATIOS AS TEMPERATURE INDICATORS FOR COOL STARS , 1994 .

[51]  D. F. Gray,et al.  PRECISE MEASUREMENT OF STELLAR TEMPERATURES USING LINE-DEPTH RATIOS , 1991 .

[52]  Andrew McWilliam,et al.  High-resolution spectroscopic survey of 671 GK giants. I. Stellar atmosphere parameters and abundances , 1990 .

[53]  D. Sasselov,et al.  Accurate relative temperatures and reddenings for cool stars from C I lines at 1 micron , 1990 .

[54]  V. Smith,et al.  The Chemical Composition of Red Giants. III. Further CNO Isotopic and s-Process Abundances in Thermally Pulsing Asymptotic Giant Branch Stars , 1990 .

[55]  V. Smith,et al.  The chemical composition of red giants. I. Dredge-up in the M and MS stars. , 1985 .

[56]  C. Sneden The nitrogen abundance of the very metal-poor star HD 122563. , 1973 .

[57]  J. Meléndez,et al.  The Effective Temperature Scale of FGK Stars. II. Teff:Color:[Fe/H] Calibrations , 2005, astro-ph/0503110.

[58]  Karen J. Olsen,et al.  NIST Atomic Spectra Database (version 2.0) , 1999 .