Activity-Dependent Synaptogenesis: Regulation by a CaM-Kinase Kinase/CaM-Kinase I/βPIX Signaling Complex

[1]  M. Segal,et al.  Morphological constraints on calcium dependent glutamate receptor trafficking into individual dendritic spine. , 2007, Cell calcium.

[2]  H. Okuno,et al.  Regulation of Dendritogenesis via a Lipid-Raft-Associated Ca2+/Calmodulin-Dependent Protein Kinase CLICK-III/CaMKIγ , 2007, Neuron.

[3]  T. Soderling,et al.  Activity-Dependent Dendritic Arborization Mediated by CaM-Kinase I Activation and Enhanced CREB-Dependent Transcription of Wnt-2 , 2006, Neuron.

[4]  B. Berk,et al.  The multifunctional GIT family of proteins , 2006, Journal of Cell Science.

[5]  G. Rosenberger,et al.  αPIX and βPIX and their role in focal adhesion formation , 2006 .

[6]  I. Macara,et al.  The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis , 2006, Nature Cell Biology.

[7]  M. Sheng,et al.  Molecular mechanisms of dendritic spine morphogenesis , 2006, Current Opinion in Neurobiology.

[8]  Barbara Calabrese,et al.  Development and regulation of dendritic spine synapses. , 2006, Physiology.

[9]  R. Weinberg,et al.  A Critical Role for Myosin IIB in Dendritic Spine Morphology and Synaptic Function , 2006, Neuron.

[10]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.

[11]  Alan Hall,et al.  Rho GTPases: biochemistry and biology. , 2005, Annual review of cell and developmental biology.

[12]  S. Halpain,et al.  Essential Role for the PKC Target MARCKS in Maintaining Dendritic Spine Morphology , 2005, Neuron.

[13]  Rudolf Jaenisch,et al.  Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Daniel Nietlispach,et al.  Structural analysis of the SH3 domain of beta-PIX and its interaction with alpha-p21 activated kinase (PAK). , 2005, Biochemistry.

[15]  Y. Goda,et al.  The actin cytoskeleton: integrating form and function at the synapse. , 2005, Annual review of neuroscience.

[16]  T. Pawson,et al.  Protein phosphorylation in signaling--50 years and counting. , 2005, Trends in biochemical sciences.

[17]  Yasunori Hayashi,et al.  Dendritic Spine Geometry: Functional Implication and Regulation , 2005, Neuron.

[18]  Anirvan Ghosh,et al.  Calcium Signaling and the Control of Dendritic Development , 2005, Neuron.

[19]  T. Oertner,et al.  Calcium regulation of actin dynamics in dendritic spines. , 2005, Cell calcium.

[20]  Mary B. Kennedy,et al.  Spine architecture and synaptic plasticity , 2005, Trends in Neurosciences.

[21]  D. Webb,et al.  A GIT1/PIX/Rac/PAK Signaling Module Regulates Spine Morphogenesis and Synapse Formation through MLC , 2005, The Journal of Neuroscience.

[22]  Suzanne Paradis,et al.  The Rac1-GEF Tiam1 Couples the NMDA Receptor to the Activity-Dependent Development of Dendritic Arbors and Spines , 2005, Neuron.

[23]  T. Soderling,et al.  Calmodulin-dependent Kinase Kinase/calmodulin Kinase I Activity Gates Extracellular-regulated Kinase-dependent Long-term Potentiation Intracellular Ca 2ϩ and Protein Phosphorylation Play Pivotal Roles in Long-term Potentiation (ltp), a Cellular Model of Learning and Memory. Ca 2ϩ Regulates Multiple , 2005 .

[24]  Elena B. Pasquale,et al.  Molecular mechanisms of dendritic spine development and remodeling , 2005, Progress in Neurobiology.

[25]  C. Der,et al.  GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors , 2005, Nature Reviews Molecular Cell Biology.

[26]  A. Sorokin,et al.  Endothelin 1 Induces β1Pix Translocation and Cdc42 Activation via Protein Kinase A-dependent Pathway* , 2005, Journal of Biological Chemistry.

[27]  T. Soderling,et al.  Inhibition of Calcium/Calmodulin-dependent Protein Kinase Kinase by Protein 14-3-3* , 2004, Journal of Biological Chemistry.

[28]  Jinsong Meng,et al.  Regulation of ADF/cofilin phosphorylation and synaptic function by LIM-kinase , 2004, Neuropharmacology.

[29]  T. Oertner,et al.  Influx of extracellular calcium regulates actin-dependent morphological plasticity in dendritic spines , 2004, Neuropharmacology.

[30]  Q. Feng,et al.  Novel regulatory mechanisms for the Dbl family guanine nucleotide exchange factor Cool‐2/α‐Pix , 2004 .

[31]  Rafael Yuste,et al.  Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility , 2004, Molecular and Cellular Neuroscience.

[32]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[33]  Susumu Tonegawa,et al.  Altered Cortical Synaptic Morphology and Impaired Memory Consolidation in Forebrain- Specific Dominant-Negative PAK Transgenic Mice , 2004, Neuron.

[34]  Y. Bellaiche,et al.  Mammalian Scribble Forms a Tight Complex with the βPIX Exchange Factor , 2004, Current Biology.

[35]  T. Soderling,et al.  Calcium Activation of ERK Mediated by Calmodulin Kinase I* , 2004, Journal of Biological Chemistry.

[36]  Steven P Gygi,et al.  Semiquantitative Proteomic Analysis of Rat Forebrain Postsynaptic Density Fractions by Mass Spectrometry* , 2004, Journal of Biological Chemistry.

[37]  T. Soderling,et al.  Regulation of Axonal Extension and Growth Cone Motility by Calmodulin-Dependent Protein Kinase I , 2004, The Journal of Neuroscience.

[38]  Kees Jalink,et al.  Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. , 2004, Biophysical journal.

[39]  G. Bokoch Biology of the p21-activated kinases. , 2003, Annual review of biochemistry.

[40]  R. Mains,et al.  Kalirin, a Multifunctional Rho Guanine Nucleotide Exchange Factor, Is Necessary for Maintenance of Hippocampal Pyramidal Neuron Dendrites and Dendritic Spines , 2003, The Journal of Neuroscience.

[41]  A. Matus,et al.  Activity-induced targeting of profilin and stabilization of dendritic spine morphology , 2003, Nature Neuroscience.

[42]  M. Segal,et al.  Formation of dendritic spines in cultured striatal neurons depends on excitatory afferent activity , 2003, The European journal of neuroscience.

[43]  M. Sheng,et al.  The Shank Family of Postsynaptic Density Proteins Interacts with and Promotes Synaptic Accumulation of the βPIX Guanine Nucleotide Exchange Factor for Rac1 and Cdc42* , 2003, Journal of Biological Chemistry.

[44]  D. Webb,et al.  Synapse formation is regulated by the signaling adaptor GIT1 , 2003, The Journal of cell biology.

[45]  H. Tokumitsu,et al.  A Single Amino Acid Difference between α and β Ca2+/Calmodulin-dependent Protein Kinase Kinase Dictates Sensitivity to the Specific Inhibitor, STO-609* , 2003, The Journal of Biological Chemistry.

[46]  R. Weinberg,et al.  Interaction between Liprin-α and GIT1 Is Required for AMPA Receptor Targeting , 2003, The Journal of Neuroscience.

[47]  C. Garner,et al.  The GIT Family of Proteins Forms Multimers and Associates with the Presynaptic Cytomatrix Protein Piccolo* , 2003, The Journal of Biological Chemistry.

[48]  R. Huganir,et al.  Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin , 2003, Neuron.

[49]  T. Pawson,et al.  The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling , 2002, Nature Cell Biology.

[50]  G. Bokoch,et al.  Phosphorylation of p85 βPIX, a Rac/Cdc42-specific Guanine Nucleotide Exchange Factor, via the Ras/ERK/PAK2 Pathway Is Required for Basic Fibroblast Growth Factor-induced Neurite Outgrowth* , 2002, The Journal of Biological Chemistry.

[51]  H. Tokumitsu,et al.  Characterization of Ca2+/calmodulin-dependent protein kinase I as a myosin II regulatory light chain kinase in vitro and in vivo. , 2002, The Biochemical journal.

[52]  Rafael Yuste,et al.  Spine Motility Phenomenology, Mechanisms, and Function , 2002, Neuron.

[53]  M. Matsuda,et al.  Activation of Rac and Cdc42 Video Imaged by Fluorescent Resonance Energy Transfer-Based Single-Molecule Probes in the Membrane of Living Cells , 2002, Molecular and Cellular Biology.

[54]  Tohru Natsume,et al.  A direct nanoflow liquid chromatography-tandem mass spectrometry system for interaction proteomics. , 2002, Analytical chemistry.

[55]  V. Budnik,et al.  Regulation of Synaptic Plasticity and Synaptic Vesicle Dynamics by the PDZ Protein Scribble , 2002, The Journal of Neuroscience.

[56]  H. Tokumitsu,et al.  STO-609, a Specific Inhibitor of the Ca2+/Calmodulin-dependent Protein Kinase Kinase* , 2002, The Journal of Biological Chemistry.

[57]  Ger J. A. Ramakers,et al.  Rho proteins, mental retardation and the cellular basis of cognition , 2002, Trends in Neurosciences.

[58]  D. V. Vactor,et al.  Drosophila Liprin-α and the Receptor Phosphatase Dlar Control Synapse Morphogenesis , 2002, Neuron.

[59]  Venkatesh N. Murthy,et al.  Rapid turnover of actin in dendritic spines and its regulation by activity , 2002, Nature Neuroscience.

[60]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[61]  M. Sheng,et al.  Dentritic spines : structure, dynamics and regulation , 2001, Nature Reviews Neuroscience.

[62]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[63]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[64]  M. Fischer,et al.  Glutamate receptors regulate actin-based plasticity in dendritic spines , 2000, Nature Neuroscience.

[65]  Ann Y. Nakayama,et al.  Small GTPases Rac and Rho in the Maintenance of Dendritic Spines and Branches in Hippocampal Pyramidal Neurons , 2000, The Journal of Neuroscience.

[66]  H. Moser,et al.  Dendritic anomalies in disorders associated with mental retardation. , 1999, Cerebral cortex.

[67]  Louis J Muglia,et al.  Calcium-Stimulated Adenylyl Cyclase Activity Is Critical for Hippocampus-Dependent Long-Term Memory and Late Phase LTP , 1999, Neuron.

[68]  R. Weinberg,et al.  Association of AMPA Receptors with a Subset of Glutamate Receptor-Interacting Protein In Vivo , 1999, The Journal of Neuroscience.

[69]  C. Downes,et al.  Ca2+/Calmodulin-dependent Protein Kinase II Regulates Tiam1 by Reversible Protein Phosphorylation* , 1999, The Journal of Biological Chemistry.

[70]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[71]  B. D. Kay,et al.  Controlling the morphology of amorphous solid water , 1999, Science.

[72]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[73]  M. Fischer,et al.  Isoform Specificity in the Relationship of Actin to Dendritic Spines , 1997, The Journal of Neuroscience.

[74]  S. B. Kater,et al.  Afferent Innervation Influences the Development of Dendritic Branches and Spines via Both Activity-Dependent and Non-Activity-Dependent Mechanisms , 1997, The Journal of Neuroscience.

[75]  T. Soderling,et al.  Inhibitory Cross-talk by cAMP Kinase on the Calmodulin-dependent Protein Kinase Cascade* , 1997, The Journal of Biological Chemistry.

[76]  M. Segal,et al.  Dendritic spine density and LTP induction in cultured hippocampal slices. , 1997, Journal of neurophysiology.

[77]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[78]  Y. Jan,et al.  Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines , 1996, Nature.

[79]  B. Bahr,et al.  Long‐term hippocampal slices: A model system for investigating synaptic mechanisms and pathologic processes , 1995, Journal of neuroscience research.

[80]  A. Edelman,et al.  Human calcium‐calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation by phosphorylation at threonine‐177 by calcium‐calmodulin dependent protein kinase I kinase. , 1995, The EMBO journal.

[81]  A. Aertsen,et al.  Morphological organization of rat hippocampal slice cultures , 1991, The Journal of comparative neurology.

[82]  G. Rosenberger,et al.  AlphaPIX and betaPIX and their role in focal adhesion formation. , 2006, European journal of cell biology.

[83]  G. Ramakers,et al.  Rho proteins, mental retardation and the neurobiological basis of intelligence. , 2005, Progress in brain research.

[84]  Q. Feng,et al.  Novel regulatory mechanisms for the Dbl family guanine nucleotide exchange factor Cool-2/alpha-Pix. , 2004, The EMBO journal.

[85]  A. Hall,et al.  Cell migration: Rho GTPases lead the way. , 2004, Developmental biology.

[86]  R. Weinberg,et al.  Interaction between liprin-alpha and GIT1 is required for AMPA receptor targeting. , 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  H. Tokumitsu,et al.  A single amino acid difference between alpha and beta Ca2+/calmodulin-dependent protein kinase kinase dictates sensitivity to the specific inhibitor, STO-609. , 2003, The Journal of biological chemistry.

[88]  D. Van Vactor,et al.  Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. , 2002, Neuron.

[89]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[90]  Marco Capogna,et al.  Miniature synaptic events maintain dendritic spines via AMPA receptor activation , 1999, Nature Neuroscience.