The Grüneisen parameter at high pressure: a molecular dynamical study

Abstract The method of molecular dynamics is used to calculate values for the thermal Gruneisen parameter, γ, for a face-centred cubic crystal with several simple central force atomic potential functions at three compressions for comparison with free volume and acoustic γ formulations. Neither is found to agree with the computer experiments. A defect in the free-volume formula for γ is shown to arise from the assumption that motions of neighbouring atoms in a crystal at high temperature are uncorrelated whereas the computer models demonstrate a 25–35% correlation of in-line motions and 5% correlation of transverse motions. The formula can be modified to allow for the empirically observed correlations, but it is concluded that there are still difficulties in analytical approaches to equation-of-state studies of the Earth's deep interior and that the computer modelling method of molecular dynamics has important advantages.

[1]  F. D. Stacey,et al.  Second order elasticity theory: An improved formulation of the Grüneisen parameter at high pressure , 1981 .

[2]  J. C. Slater Introduction to chemical physics , 1933 .

[3]  J. M. Brown,et al.  Thermodynamic parameters in the Earth as determined from seismic profiles , 1981 .

[4]  Raymond Jeanloz,et al.  Properties of iron at high pressures and the state of the core , 1979 .

[5]  Frank D. Stacey,et al.  Second-order elasticity theory: Explanation for the high poisson's ratio of the inner core , 1980 .

[6]  N. Mott,et al.  The Theory of the Properties of Metals and Alloys , 1933 .

[7]  Frank D. Stacey,et al.  Pressure Dependence of the Thermal Grüneisen Parameter, with Application to the Earth's Lower Mantle and Outer Core , 1975 .

[8]  O. Anderson,et al.  Evidence supporting the approximation γρ = const for the Grüneisen parameter of the Earth's lower mantle , 1979 .

[9]  J. S. Dugdale,et al.  The Thermal Expansion of Solids , 1953 .

[10]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[11]  S. Spiliopoulos,et al.  The earth's thermal profile: Is there a mid-mantle thermal boundary layer? , 1984 .

[12]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[13]  G. Dienes,et al.  A molecular dynamical study of the equation of state of solids at high temperature and pressure , 1978 .

[14]  Frank D. Stacey,et al.  Applications of thermodynamics to fundamental earth physics , 1977 .

[15]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[16]  W. Ludwig,et al.  Theory of Anharmonic Effects in Crystals , 1961 .

[17]  Reinhard Boehler,et al.  Behavior of Grüneisen's parameter of some metals at high pressures , 1978 .

[18]  S. I. Novikova Thermal expansion of solids , 1974 .

[19]  F. D. Stacey Physics of the earth , 1977 .

[20]  O. Anderson,et al.  A universal thermal equation-of-state. , 1984 .

[21]  Frank D. Stacey,et al.  A thermodynamically based equation of state for the lower mantle , 1979 .

[22]  F. D. Stacey,et al.  Finite strain theories and comparisons with seismological data , 1981 .

[23]  L. Knopoff,et al.  Comments on the interrelationships between Grüneisen's parameter and shock and isothermal equations of state , 1969 .

[24]  J. N. Fritz,et al.  CHAPTER VII – THE EQUATION OF STATE OF SOLIDS FROM SHOCK WAVE STUDIES , 1970 .

[25]  J. M. Brown,et al.  Melting of iron under core conditions , 1980 .

[26]  O. Anderson,et al.  The high-temperature acoustic Grüneisen parameter in the earth's interior☆ , 1979 .