Automorphism groups of fields
暂无分享,去创建一个
[1] János Kollár,et al. Automorphism groups of algebraic number fields , 1978 .
[2] H. Tachikawa,et al. QF-3 rings. , 1975 .
[3] R. Göbel,et al. Endomorphism algebras of modules with distinguished partially ordered submodules over commutative rings , 1991 .
[4] R. Göbel,et al. Four submodules suffice for realizing algebras over commutative rings , 1990 .
[5] Alexander Prestel,et al. Lectures On Formally Real Fields , 1976 .
[6] D. Simson. Linear Representations of Partially Ordered Sets and Vector Space Categories , 1993 .
[7] W. Ledermann. Lectures in Abstract Algebra : vol. III, Theory of Fields and Galois Theory. By N. Jacobson. Pp. xi, 323. 76s. (Van Nostrand) , 1966 .
[8] A. L. S. Corner,et al. Every Countable Reduced Torsion-Free Ring is an Endomorphism Ring , 1963 .
[9] Karl Strambach,et al. Gruppenuniversalität und Homogenisierbarkeit , 1985 .
[10] Rüdiger Göbel,et al. All infinite groups are Galois groups over any field , 1987 .
[11] E. Artin,et al. Algebraische Konstruktion reeller Körper , 1927 .
[12] M. Dugas,et al. Countable Butler groups and vector spaces with four distinguished subspaces , 1991 .
[13] G. Cherlin. Model theoretic algebra: Selected topics , 1976 .
[14] Dichte, Archimedizität und Starrheit geordneter Körper , 1970 .
[15] Saharon Shelah,et al. A Combinatorial Theorem and Endomorphism Rings of Abelian Groups II , 1984 .
[16] A. Corner,et al. Prescribing Endomorphism Algebras, a Unified Treatment , 1985 .
[17] M. Fried. A note on automorphism groups of algebraic number fields , 1980 .
[18] R. Göbel,et al. Prescribing endomorphism algebras. The cotorsion-free case , 1988 .
[19] Irving Kaplansky,et al. Fields and rings , 1969 .
[20] László Fuchs,et al. Infinite Abelian groups , 1970 .
[21] Existence of rigid-like families of Abelian p-groups , 1975 .
[22] Paul Conrad,et al. Right-ordered groups. , 1959 .
[23] S. Shelah. A combinatorial principle and endomorphism rings I: Onp-groups , 1984 .
[24] A. Corner. Endomorphism algebras of large modules with distinguished submodules , 1969 .
[25] R. Göbel,et al. Independence in Completions and Endomorphism Algebras , 1989 .
[26] Péter Pröhle. Does the Frobenius endomorphism always generate a direct summand in the endomorphism monoids of fields of prime characteristic? , 1984, Bulletin of the Australian Mathematical Society.
[27] W. Geyer. Jede endliche Gruppe ist Automorphismengruppe einer endlichen ErweiterungK¦ℚ , 1983 .