Automorphism groups of fields

We consider pairs (K,G) of an infinite field K or a formally real field K and a group G and want to find extension fields F of K with automorphism group G. If K is formally real then we also want F to be formally real and G must be right orderable. Besides showing the existence of the desired extension fields F, we are mainly interested in the question about the smallest possible size of such fields. From some combinatorial tools, like Shelah’s Black Box, we inherit jumps in cardinalities of K and F respectively. For this reason we apply different methods in constructing fields F: We use a recent theorem on realizations of group rings as endomorphism rings in the category of free modules with distinguished submodules. Fortunately this theorem remains valid without cardinal jumps. In our main result (Theorem 1) we will show that for a large class of fields the desired result holds for extension fields of equal cardinality.

[1]  János Kollár,et al.  Automorphism groups of algebraic number fields , 1978 .

[2]  H. Tachikawa,et al.  QF-3 rings. , 1975 .

[3]  R. Göbel,et al.  Endomorphism algebras of modules with distinguished partially ordered submodules over commutative rings , 1991 .

[4]  R. Göbel,et al.  Four submodules suffice for realizing algebras over commutative rings , 1990 .

[5]  Alexander Prestel,et al.  Lectures On Formally Real Fields , 1976 .

[6]  D. Simson Linear Representations of Partially Ordered Sets and Vector Space Categories , 1993 .

[7]  W. Ledermann Lectures in Abstract Algebra : vol. III, Theory of Fields and Galois Theory. By N. Jacobson. Pp. xi, 323. 76s. (Van Nostrand) , 1966 .

[8]  A. L. S. Corner,et al.  Every Countable Reduced Torsion-Free Ring is an Endomorphism Ring , 1963 .

[9]  Karl Strambach,et al.  Gruppenuniversalität und Homogenisierbarkeit , 1985 .

[10]  Rüdiger Göbel,et al.  All infinite groups are Galois groups over any field , 1987 .

[11]  E. Artin,et al.  Algebraische Konstruktion reeller Körper , 1927 .

[12]  M. Dugas,et al.  Countable Butler groups and vector spaces with four distinguished subspaces , 1991 .

[13]  G. Cherlin Model theoretic algebra: Selected topics , 1976 .

[14]  Dichte, Archimedizität und Starrheit geordneter Körper , 1970 .

[15]  Saharon Shelah,et al.  A Combinatorial Theorem and Endomorphism Rings of Abelian Groups II , 1984 .

[16]  A. Corner,et al.  Prescribing Endomorphism Algebras, a Unified Treatment , 1985 .

[17]  M. Fried A note on automorphism groups of algebraic number fields , 1980 .

[18]  R. Göbel,et al.  Prescribing endomorphism algebras. The cotorsion-free case , 1988 .

[19]  Irving Kaplansky,et al.  Fields and rings , 1969 .

[20]  László Fuchs,et al.  Infinite Abelian groups , 1970 .

[21]  Existence of rigid-like families of Abelian p-groups , 1975 .

[22]  Paul Conrad,et al.  Right-ordered groups. , 1959 .

[23]  S. Shelah A combinatorial principle and endomorphism rings I: Onp-groups , 1984 .

[24]  A. Corner Endomorphism algebras of large modules with distinguished submodules , 1969 .

[25]  R. Göbel,et al.  Independence in Completions and Endomorphism Algebras , 1989 .

[26]  Péter Pröhle Does the Frobenius endomorphism always generate a direct summand in the endomorphism monoids of fields of prime characteristic? , 1984, Bulletin of the Australian Mathematical Society.

[27]  W. Geyer Jede endliche Gruppe ist Automorphismengruppe einer endlichen ErweiterungK¦ℚ , 1983 .