Piezoelectric Performance and Hydrostatic Parameters of Novel 2–2-Type Composites

This paper provides a detailed study of the structure—piezoelectric property relationships and the hydrostatic response of 2–2-Type composites based on relaxor-ferroelectric 0.72 Pb (Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>–0.28PbTiO<sub>3</sub> single crystal (SC) material. Type I layers in the composite system are represented by a single-domain [111]-poled SC. Changes in the orientation of the crystallographic axes in the Type I layer are undertaken to determine the maximum values of the hydrostatic piezoelectric coefficients <inline-formula> <tex-math notation="LaTeX">$d_{h}^{\ast } $ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$g_{h}^{\ast } $ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$e_{h}^{\ast } $ </tex-math></inline-formula>, and squared figure of merit <inline-formula> <tex-math notation="LaTeX">$d_{h}^{\ast } g_{h}^{\ast } $ </tex-math></inline-formula> of the composite. The Type II layers are a 0–3 composite whereby inclusions of modified PbTiO<sub>3</sub> ceramic are distributed in a polymer matrix. A new effect is described for the first time due to the impact of anisotropic elastic properties of the Type II layers on the hydrostatic piezoelectric response that is coupled with the polarization orientation effect in the Type I layers. Large hydrostatic parameters <inline-formula> <tex-math notation="LaTeX">$g_{h}^{\ast } \approx 300$ </tex-math></inline-formula>–400 mV <inline-formula> <tex-math notation="LaTeX">$\cdot $ </tex-math></inline-formula> m/N, <inline-formula> <tex-math notation="LaTeX">$e_{h}^{\ast } \approx 40$ </tex-math></inline-formula>–45 C/<inline-formula> <tex-math notation="LaTeX">$\text{m}^{2}$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$d_{h}^{\ast } g_{h}^{\ast } \sim 10^{-11}$ </tex-math></inline-formula> Pa<inline-formula> <tex-math notation="LaTeX">$^{-1}$ </tex-math></inline-formula> are achieved in the composite based on the 0.72 Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>–0.28PbTiO<sub>3</sub> SC. Examples of the large piezoelectric anisotropy (<inline-formula> <tex-math notation="LaTeX">$|d_{33}^{\ast } /d_{3f}^{\ast } | \ge 5$ </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">$| g_{33}^{\ast } /g_{3f}^{\ast } | \ge 5$ </tex-math></inline-formula>) are discussed. The hydrostatic parameters of this novel compositesystem are compared to those of conventional 2–2 piezocomposites.

[1]  M. White Electrical properties , 2012, Physics Subject Headings (PhySH).

[2]  Haosu Luo,et al.  A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2-2 composite , 2017 .

[3]  S. van der Zwaag,et al.  In-situ poling and structurization of piezoelectric particulate composites , 2017, Journal of intelligent material systems and structures.

[4]  P. Bisegna,et al.  Advanced composites based on relaxor-ferroelectric single crystals: from electromechanical coupling to energy-harvesting applications , 2016 .

[5]  C. Bowen,et al.  Remarkable hydrostatic piezoelectric response of novel 2–0–2 composites , 2015 .

[6]  X. Dongyu,et al.  Investigation of inorganic fillers on properties of 2–2 connectivity cement/polymer based piezoelectric composites , 2015 .

[7]  T. Shrout,et al.  Hydrostatic piezoelectric properties of [011] poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals and 2-2 lamellar composites. , 2014, Applied physics letters.

[8]  P. Bisegna,et al.  Piezo-Active Composites: Orientation Effects and Anisotropy Factors , 2013 .

[9]  Weiqi Wang,et al.  Ternary piezoelectric single-crystal PIMNT based 2-2 composite for ultrasonic transducer applications , 2013 .

[10]  Jun Luo,et al.  Relaxor-PbTiO3 single crystals for various applications , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[11]  Shujun Zhang,et al.  High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective , 2012 .

[12]  Wenwu Cao,et al.  Electromechanical properties and anisotropy of single- and multi-domain 0.72Pb(Mg(1∕3)Nb(2∕3))O(3)-0.28PbTiO(3) single crystals. , 2011, Applied physics letters.

[13]  Rui Zhang,et al.  Complete set of elastic, dielectric, and piezoelectric coefficents of 0.93Pb (Zn1/3Nb2/3)O3 -0.07PbTiO3 single crystal poled along [011] , 2006 .

[14]  A. Safari,et al.  Piezoelectric composites for sensor and actuator applications , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  V. Shuvaeva,et al.  The macroscopic symmetry of Pb(Mg1/3Nb2/3)1−xTixO3 in the morphotropic phase boundary region (x = 0.25–0.5) , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Rui Zhang,et al.  Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals , 2001 .

[17]  Jin H. Huang,et al.  Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers , 1996 .

[18]  A. Grekov,et al.  Anomalous behavior of the two-phase lamellar piezoelectric texture , 1987 .

[19]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[20]  I. Ueda,et al.  Electromechanical Properties of PbTiO3 Ceramics Containing La and Mn , 1971 .

[21]  P. Bisegna,et al.  Piezo-Active Composites: Microgeometry–Sensitivity Relations , 2014 .

[22]  H. J. van de Wiel,et al.  Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites , 2011 .

[23]  Kenneth E. Evans,et al.  The static and dynamic moduli of auxetic microporous polyethylene , 1992 .

[24]  Yuhuan Xu,et al.  Ferroelectric Materials and Their Applications , 2023, Japanese Journal of Applied Physics.

[25]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[26]  I. Zheludev,et al.  Physics of crystalline dielectrics , 1971 .

[27]  Don Berlincourt,et al.  3 – Piezoelectric and Piezomagnetic Materials and Their Function in Transducers , 1964 .