Application of a Thermal-Hydraulic Management Model to Gas Turbine Combustors and Fuel Systems

An advanced thermal management analysis tool, named Advanced Thermal Hydraulic Energy Network Analyzer (ATHENA), has been used to simulate a fuel system for gas turbine engines. The ATHENA tool was modified to account for JP-8/dodecane fuel properties. The JP-8/dodecane fuel thermodynamic properties were obtained from the SUPERTRAP property program. A series of tests of a fuel system simulator located at the Air Force Research Laboratory (AFRL)/Wright Patterson Air Force Base were conducted to characterize the steady state and dynamic behavior of the fuel system. Temperature, pressures and fuel flows for various fuel pump speeds, pressure rise and flow control valve stem positions (orifice areas), heat loads and engine fuel flows were measured. The predicted results were compared to the measured data and found to be in excellent agreement. This demonstrates the capability of the ATHENA tool to reproduce the experimental data and, consequently, its validity as an analysis tool that can be used to carry out analysis and design of fuel systems for advanced gas turbine engines. However, some key components in the fuel system simulator such as control components, which regulate the engine fuel flow based on predetermined parameters such as fan speed, compressor inlet and exit pressures and temperatures, combustor pressure, turbine temperature and power demand, were not simulated in the present investigation due to their complex interactions with other components functions. Efforts are currently underway to simulate the operation of the fuel system components with control as the engine fuel flow and power demands are varied.Copyright © 1999 by ASME