Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling

Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint‐based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time‐dependent changes, albeit using a static model. By performing an in silico knock‐out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms.

[1]  S. Oliver,et al.  An integrated approach to characterize genetic interaction networks in yeast metabolism , 2011, Nature Genetics.

[2]  A. Peterkofsky,et al.  A Dual Mechanism for Regulating cAMP Levels in Escherichia coli(*) , 1995, The Journal of Biological Chemistry.

[3]  B. Palsson,et al.  Metabolic modelling of microbes: the flux-balance approach. , 2002, Environmental microbiology.

[4]  J. Drake,et al.  Rates of spontaneous mutation. , 1998, Genetics.

[5]  Arne G. Schmeisky,et al.  Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium , 2012, Molecular systems biology.

[6]  M. Ángeles Serrano,et al.  Predicting effects of structural stress in a genome-reduced model bacterial metabolism , 2012, Scientific Reports.

[7]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[8]  Jan Kok,et al.  Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR. , 2005, FEMS microbiology reviews.

[9]  N. Somerson,et al.  Cholesterol as a limiting factor in the growth of Mycoplasma pneumoniae , 1980, Applied and environmental microbiology.

[10]  B. Palsson,et al.  Regulation of gene expression in flux balance models of metabolism. , 2001, Journal of theoretical biology.

[11]  A. Harden Bacterial Metabolism , 1930, Nature.

[12]  J. Pollack,et al.  The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. , 1997, Critical reviews in microbiology.

[13]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[14]  B. Palsson,et al.  Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli , 2003, Journal of bacteriology.

[15]  Xingming Zhao,et al.  Computational Systems Biology , 2013, TheScientificWorldJournal.

[16]  S. Schmidl,et al.  A Trigger Enzyme in Mycoplasma pneumoniae: Impact of the Glycerophosphodiesterase GlpQ on Virulence and Gene Expression , 2011, PLoS pathogens.

[17]  Yukiko Matsuoka,et al.  Using process diagrams for the graphical representation of biological networks , 2005, Nature Biotechnology.

[18]  R. Hutkins,et al.  pH Homeostasis in Lactic Acid Bacteria , 1993 .

[19]  K. Uğurbil,et al.  Properties of fructose-1,6-bisphosphate aldolase from Escherichia coli: an NMR analysis. , 1995, Archives of biochemistry and biophysics.

[20]  J. Pollack,et al.  Isolation, Characterization, and Immunogenicity of Mycoplasma pneumoniae Membranes , 1970, Infection and immunity.

[21]  D. Fell,et al.  Fat synthesis in adipose tissue. An examination of stoichiometric constraints. , 1986, The Biochemical journal.

[22]  María Lluch-Senar,et al.  Bacterial transcriptomics: what is beyond the RNA horiz-ome? , 2011, Nature Reviews Microbiology.

[23]  Jacob D. Jaffe,et al.  Energetics of Gliding Motility in Mycoplasma mobile , 2004, Journal of bacteriology.

[24]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[25]  Claudine Hames Glycerolmetabolismus und Pathogenität von Mycoplasma pneumoniae , 2008 .

[26]  Bernhard O. Palsson,et al.  Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions , 2000, BMC Bioinformatics.

[27]  J. Pollack,et al.  Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes. , 1988, Journal of general microbiology.

[28]  M. Sakamoto,et al.  Comparison of H2O-forming NADH oxidase from Leuconostoc mesenteroides subsp. mesenteroides NRIC 1541T and H2O2-forming NADH oxidase from Sporolactobacillus inulinus NRIC 1133T , 1996 .

[29]  Tatiana A. Tatusova,et al.  Complete genomes in WWW Entrez: data representation and analysis , 1999, Bioinform..

[30]  Jörg Stülke,et al.  Tools for the genetic analysis of Mycoplasma. , 2007, International journal of medical microbiology : IJMM.

[31]  S. Pirt The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[32]  Jason A. Papin,et al.  * Corresponding authors , 2006 .

[33]  Yan P. Yuan,et al.  Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. , 2000, Nucleic acids research.

[34]  L. Moore,et al.  Identification of Clostridium botulinum, Clostridium argentinense, and related organisms by cellular fatty acid analysis , 1991, Journal of clinical microbiology.

[35]  H. Kobayashi A proton-translocating ATPase regulates pH of the bacterial cytoplasm. , 1985, The Journal of biological chemistry.

[36]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[37]  Richard H. Ebright,et al.  Transcriptome Complexity in a Genome-Reduced Bacterium , 2009 .

[38]  Masasuke Yoshida,et al.  Temperature-sensitive reaction intermediate of F1-ATPase , 2007, EMBO reports.

[39]  Bernhard O. Palsson,et al.  The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions , 2011, BMC Systems Biology.

[40]  Wu Wei-xia,et al.  Stochastic Four-State Mechanochemical Model of F1-ATPase , 2010 .

[41]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[42]  B. Palsson,et al.  Constraints-based models: regulation of gene expression reduces the steady-state solution space. , 2003, Journal of theoretical biology.

[43]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[44]  Ines Thiele,et al.  rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks , 2011, Bioinform..

[45]  B O Palsson,et al.  Optimal selection of metabolic fluxes for in vivo measurement. I. Development of mathematical methods. , 1992, Journal of theoretical biology.

[46]  Jason A. Papin,et al.  Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology , 2008, PLoS Comput. Biol..

[47]  S. Hill,et al.  Regulation of primary metabolic pathways in plants , 1999 .

[48]  J. Monod From enzymatic adaptation to allosteric transitions , 1966, Science.

[49]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[50]  Ronan M. T. Fleming,et al.  von Bertalanffy 1.0: a COBRA toolbox extension to thermodynamically constrain metabolic models , 2011, Bioinform..

[51]  J. Avigan,et al.  CHEMICAL COMPOSITION OF MYCOPLASMA CELLS AND MEMBRANES. , 1963, Journal of general microbiology.

[52]  D. J. Naylor,et al.  Contribution of molecular chaperones to protein folding in the cytoplasm of prokaryotic and eukaryotic cells. , 2001, Biochemical Society symposium.

[53]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[54]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[55]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[56]  C. Hutchison,et al.  Essential genes of a minimal bacterium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  P. Bork,et al.  Impact of Genome Reduction on Bacterial Metabolism and Its Regulation , 2009, Science.

[58]  P. Hargrave,et al.  Fructose-bisphosphate aldolase from Helix pomatia. , 1982, Methods in enzymology.

[59]  Antje Chang,et al.  BRENDA, the enzyme information system in 2011 , 2010, Nucleic Acids Res..

[60]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[61]  U. Sauer,et al.  Multidimensional Optimality of Microbial Metabolism , 2012, Science.

[62]  R. Aebersold,et al.  Quantification of mRNA and protein and integration with protein turnover in a bacterium , 2011, Molecular systems biology.

[63]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[64]  P. Bork,et al.  Proteome Organization in a Genome-Reduced Bacterium , 2009, Science.

[65]  R. Chanock,et al.  Growth on artificial medium of an agent associated with atypical pneumonia and its identification as a PPLO. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Earl,et al.  Energy consumption in a cyclic phosphorylation/dephosphorylation cascade. , 1984, The Journal of biological chemistry.

[67]  S. Schmidl,et al.  Regulatory Protein Phosphorylation in Mycoplasma pneumoniae , 2006, Journal of Biological Chemistry.

[68]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[69]  Joerg M. Buescher,et al.  Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism , 2012, Science.

[70]  W. Souza,et al.  Vacuolar-type H+-ATPase regulates cytoplasmic pH in Toxoplasma gondii tachyzoites. , 1998, The Biochemical journal.

[71]  Griffin M. Weber,et al.  BioNumbers—the database of key numbers in molecular and cell biology , 2009, Nucleic Acids Res..

[72]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[73]  Edda Klipp,et al.  Systems Biology in Practice , 2005 .

[74]  B O Palsson,et al.  Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. , 1992, Journal of theoretical biology.

[75]  J. Stülke,et al.  Glycerol Metabolism Is Important for Cytotoxicity of Mycoplasma pneumoniae , 2008, Journal of bacteriology.

[76]  Ronan M. T. Fleming,et al.  Quantitative assignment of reaction directionality in constraint-based models of metabolism: application to Escherichia coli. , 2009, Biophysical chemistry.

[77]  J. Nicholson,et al.  Global urinary metabolic profiling procedures using gas chromatography–mass spectrometry , 2011, Nature Protocols.

[78]  B. Schwikowski,et al.  Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis , 2012, Science.

[79]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[80]  N. Somerson,et al.  MYCOPLASMA PNEUMONIAE: HYDROGEN PEROXIDE SECRETION AND ITS POSSIBLE ROLE IN VIRULENCE * , 1967, Annals of the New York Academy of Sciences.

[81]  Peer Bork,et al.  Use of pathway analysis and genome context methods for functional genomics of Mycoplasma pneumoniae nucleotide metabolism. , 2007, Gene.

[82]  B. Garvik,et al.  Principles for the buffering of genetic variation. , 2001 .

[83]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[84]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[85]  E. Pfendt,et al.  Sterol Requirements of T-Strain Mycoplasmas , 1971, Journal of bacteriology.

[86]  M. Suyama,et al.  Transcriptome Complexity in a Genome-Reduced Bacterium , 2009, Science.

[87]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[88]  S. Rottem Membrane lipids of mycoplasmas. , 1980, Biochimica et biophysica acta.

[89]  R. McElhaney,et al.  Mycoplasma Membrane Lipids: Variations in Fatty Acid Composition , 1969, Science.

[90]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[91]  Ken B. Waites,et al.  Mycoplasma pneumoniae and Its Role as a Human Pathogen , 2004, Clinical Microbiology Reviews.

[92]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[93]  Andrew R. Joyce,et al.  Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli , 2006, Journal of bacteriology.

[94]  A. Frangakis,et al.  Structural analysis of Mycoplasma pneumoniae by cryo-electron tomography. , 2006, Journal of structural biology.

[95]  M. Hungria,et al.  ABC transporters in Mycoplasma hyopneumoniae and Mycoplasma synoviae: insights into evolution and pathogenicity , 2007 .

[96]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[97]  B. Garvik,et al.  Principles for the Buffering of Genetic Variation , 2001, Science.

[98]  Vinay Satish Kumar,et al.  A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189 , 2009, PLoS Comput. Biol..

[99]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[100]  Y. Shachar-Hill,et al.  5-Formyltetrahydrofolate Is an Inhibitory but Well Tolerated Metabolite in Arabidopsis Leaves* , 2005, Journal of Biological Chemistry.