Asymptotics for a Determinant with a Confluent Hypergeometric Kernel
暂无分享,去创建一个
[1] Dyson's Constant in the Asymptotics of the Fredholm Determinant of the Sine Kernel , 2004, math/0401205.
[2] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[3] W. Van Assche,et al. The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .
[4] Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle , 2004, math/0401258.
[5] Infinite Random Matrices and Ergodic Measures , 2000, math-ph/0010015.
[6] Freeman J. Dyson,et al. Fredholm determinants and inverse scattering problems , 1976 .
[7] A. S. Fokas,et al. The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .
[8] A. Kuijlaars,et al. Universality for Eigenvalue Correlations at the Origin of the Spectrum , 2003, math-ph/0305044.
[9] Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices , 2005, math-ph/0507023.
[10] Universality of random matrices in the microscopic limit and the Dirac operator spectrum , 1996, hep-th/9609174.
[11] Henry P. McKean,et al. Fredholm determinants , 2011 .
[12] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .
[13] Dyson’s Constants in the Asymptotics of the Determinants of Wiener-Hopf-Hankel Operators with the Sine Kernel , 2006, math/0605003.
[14] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[15] Alexei Borodin,et al. Fredholm determinants, Jimbo‐Miwa‐Ueno τ‐functions, and representation theory , 2001 .
[16] Craig A. Tracy,et al. Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .
[17] Alexander Its,et al. A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .
[18] P. Deift,et al. Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities , 2009, 0905.0443.
[19] Athanassios S. Fokas,et al. The isomonodromy approach to matric models in 2D quantum gravity , 1992 .
[20] H. Widom. The Asymptotics of a Continuous Analogue of Orthogonal Polynomials , 1994 .
[21] H. Widom. The Strong Szego Limit Theorem for Circular Arcs , 1971 .
[22] P. Deift,et al. A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.
[23] J. Baik,et al. On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.
[24] T. Nagao,et al. Nonuniversal correlations for random matrix ensembles , 1993 .
[25] P. Deift,et al. Asymptotics of the Airy-Kernel Determinant , 2006 .
[26] T. Ehrhardt. The asymptotics a Bessel-kernel determinant which arises in Random Matrix Theory , 2010, 1001.2340.
[27] P. Forrester. The spectrum edge of random matrix ensembles , 1993 .
[28] M. Mehta,et al. Asymptotic behavior of spacing distributions for the eigenvalues of random matrices , 1973 .
[29] T. Ehrhardt. A Status Report on the Asymptotic Behavior of Toeplitz Determinants with Fisher-Hartwig Singularities , 2001 .
[30] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[31] O. Lisovyy. Dyson's constant for the hypergeometric kernel , 2009, 0910.1914.
[32] The Widom-Dyson constant for the gap probability in random matrix theory , 2006, math/0601535.