Extensions of ω-Regular Languages
暂无分享,去创建一个
Georg Zetzsche | Edon Kelmendi | Mikolaj Bojanczyk | Rafal Stefanski | M. Bojanczyk | Edon Kelmendi | Rafal Stefanski | Georg Zetzsche
[1] Markus Lohrey,et al. On Boolean Closed Full Trios and Rational Kripke Frames , 2017, Theory of Computing Systems.
[2] Szymon Torunczyk,et al. Deterministic Automata and Extensions of Weak MSO , 2009, FSTTCS.
[3] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[4] Alexander Moshe Rabinovich,et al. Decidable Theories of the Ordering of Natural Numbers with Unary Predicates , 2006, CSL.
[5] Robert McNaughton,et al. Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..
[6] Maurice Nivat,et al. Transduction des langages de Chomsky , 1968 .
[7] Wolfgang Thomas,et al. Languages, Automata, and Logic , 1997, Handbook of Formal Languages.
[8] Olivier Carton,et al. The Monadic Theory of Morphic Infinite Words and Generalizations , 2000, Inf. Comput..
[9] Mikolaj Bojanczyk,et al. Recognisable Languages over Monads , 2015, DLT.
[10] Juris Hartmanis,et al. What makes Some Language Theory Problems Undecidable , 1970, J. Comput. Syst. Sci..
[11] Szymon Torunczyk,et al. The MSO+U theory of (N, <) is undecidable , 2016, STACS.
[12] Andrej Muchnik,et al. Almost periodic sequences , 2003, Theor. Comput. Sci..
[13] A Bounding Quanti. A Bounding Quantifier , .
[14] Matteo Mio,et al. Measure Quantifier in Monadic Second Order Logic , 2016, LFCS.
[15] Mikolaj Bojanczyk,et al. Weak MSO with the Unbounding Quantifier , 2009, Theory of Computing Systems.
[16] Szczepan Hummel,et al. On the Topological Complexity of MSO+U and Related Automata Models , 2010, MFCS.
[17] Jean-Eric Pin,et al. Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.
[18] M. Rabin. Decidability of second-order theories and automata on infinite trees , 1968 .
[19] Calvin C. Elgot,et al. Decidability and Undecidability of Extensions of Second (First) Order Theory of (Generalized) Successor , 1966, J. Symb. Log..
[20] Dana Fisman,et al. Regular omega-Languages with an Informative Right Congruence , 2018, GandALF.
[21] Wolfgang Thomas. A note on undecidable extensions of monadic second order successor arithmetic , 1975, Arch. Math. Log..
[22] D. Siefkes. Undecidable Extensions of Monadic Second Order Successor Arithmetic , 1971 .
[23] Alexei L. Semenov,et al. Decidability of Monadic Theories , 1984, MFCS.
[24] D. Angluin,et al. Regular ω-languages with an informative right congruence , 2020, Inf. Comput..
[25] R. Robinson. Restricted set-theoretical definitions in arithmetic , 1958 .
[26] Michal Skrzypczak,et al. Monadic Second Order Logic with Measure and Category Quantifiers , 2018, Log. Methods Comput. Sci..
[27] Christel Baier,et al. Probabilistic ω-automata , 2012, JACM.
[28] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[29] Felix Klaedtke,et al. Monadic Second-Order Logics with Cardinalities , 2003, ICALP.
[30] C. C. Elgot. Decision problems of finite automata design and related arithmetics , 1961 .
[31] Jouko Väänänen,et al. The Härtig quantifier: a survey , 1991, Journal of Symbolic Logic.
[32] Carl G. Jockusch,et al. Decidability and Undecidability of Theories with a Predicate for the Primes , 1993, J. Symb. Log..
[33] S. Sieber. On a decision method in restricted second-order arithmetic , 1960 .
[34] Jouko A. Väänänen,et al. The Härtig Quantifier: A Survey , 1991, J. Symb. Log..
[35] B. A. Trakhtenbrot,et al. Finite Automata and the Logic of Single-Place Predicates , 1962 .