Extensions of ω-Regular Languages

We consider extensions of monadic second-order logic over ω-words, which are obtained by adding one language that is not ω-regular. We show that if the added language L has a neutral letter, then the resulting logic is necessarily undecidable. A corollary is that the ω-regular languages are the only decidable Boolean-closed full trio over ω-words.

[1]  Markus Lohrey,et al.  On Boolean Closed Full Trios and Rational Kripke Frames , 2017, Theory of Computing Systems.

[2]  Szymon Torunczyk,et al.  Deterministic Automata and Extensions of Weak MSO , 2009, FSTTCS.

[3]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[4]  Alexander Moshe Rabinovich,et al.  Decidable Theories of the Ordering of Natural Numbers with Unary Predicates , 2006, CSL.

[5]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[6]  Maurice Nivat,et al.  Transduction des langages de Chomsky , 1968 .

[7]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[8]  Olivier Carton,et al.  The Monadic Theory of Morphic Infinite Words and Generalizations , 2000, Inf. Comput..

[9]  Mikolaj Bojanczyk,et al.  Recognisable Languages over Monads , 2015, DLT.

[10]  Juris Hartmanis,et al.  What makes Some Language Theory Problems Undecidable , 1970, J. Comput. Syst. Sci..

[11]  Szymon Torunczyk,et al.  The MSO+U theory of (N, <) is undecidable , 2016, STACS.

[12]  Andrej Muchnik,et al.  Almost periodic sequences , 2003, Theor. Comput. Sci..

[13]  A Bounding Quanti A Bounding Quantifier , .

[14]  Matteo Mio,et al.  Measure Quantifier in Monadic Second Order Logic , 2016, LFCS.

[15]  Mikolaj Bojanczyk,et al.  Weak MSO with the Unbounding Quantifier , 2009, Theory of Computing Systems.

[16]  Szczepan Hummel,et al.  On the Topological Complexity of MSO+U and Related Automata Models , 2010, MFCS.

[17]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[18]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[19]  Calvin C. Elgot,et al.  Decidability and Undecidability of Extensions of Second (First) Order Theory of (Generalized) Successor , 1966, J. Symb. Log..

[20]  Dana Fisman,et al.  Regular omega-Languages with an Informative Right Congruence , 2018, GandALF.

[21]  Wolfgang Thomas A note on undecidable extensions of monadic second order successor arithmetic , 1975, Arch. Math. Log..

[22]  D. Siefkes Undecidable Extensions of Monadic Second Order Successor Arithmetic , 1971 .

[23]  Alexei L. Semenov,et al.  Decidability of Monadic Theories , 1984, MFCS.

[24]  D. Angluin,et al.  Regular ω-languages with an informative right congruence , 2020, Inf. Comput..

[25]  R. Robinson Restricted set-theoretical definitions in arithmetic , 1958 .

[26]  Michal Skrzypczak,et al.  Monadic Second Order Logic with Measure and Category Quantifiers , 2018, Log. Methods Comput. Sci..

[27]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[28]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[29]  Felix Klaedtke,et al.  Monadic Second-Order Logics with Cardinalities , 2003, ICALP.

[30]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[31]  Jouko Väänänen,et al.  The Härtig quantifier: a survey , 1991, Journal of Symbolic Logic.

[32]  Carl G. Jockusch,et al.  Decidability and Undecidability of Theories with a Predicate for the Primes , 1993, J. Symb. Log..

[33]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[34]  Jouko A. Väänänen,et al.  The Härtig Quantifier: A Survey , 1991, J. Symb. Log..

[35]  B. A. Trakhtenbrot,et al.  Finite Automata and the Logic of Single-Place Predicates , 1962 .