P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries

[1]  Zhaoping Liu,et al.  Structure and electrochemistry of B doped Li(Li 0.2 Ni 0.13 Co 0.13 Mn 0.54 ) 1-x B x O 2 as cathode materials for lithium-ion batteries , 2016 .

[2]  Jianjun Zhang,et al.  Evaluation of Low-cost Natrochalcite Na[Cu 2 (OH)(H 2 O)(SO 4 ) 2 ] as an Anode Material for Li- and Na-ion Batteries , 2016 .

[3]  Xing-long Wu,et al.  P2-Na2/3Ni1/3Mn5/9Al1/9O2 Microparticles as Superior Cathode Material for Sodium-Ion Batteries: Enhanced Properties and Mechanisam via Graphene Connection. , 2016, ACS applied materials & interfaces.

[4]  F. Ding,et al.  Synthesis and evaluation of NaNi0.5Co0.2Mn0.3O2 as a cathode material for Na-ion battery , 2016 .

[5]  Zhongbo Hu,et al.  New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer , 2016 .

[6]  K. Du,et al.  Mg–Al–B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage , 2016 .

[7]  Yongming Zhu,et al.  Effect of pre-thermal treatment on the lithium storage performance of LiNi0.8Co0.15Al0.05O2 , 2016, Journal of Materials Science.

[8]  Chun‐Sing Lee,et al.  Copper substituted P2-type Na0.67CuxMn1−xO2: a stable high-power sodium-ion battery cathode , 2015 .

[9]  P. Bruce,et al.  Rate Dependent Performance Related to Crystal Structure Evolution of Na0.67Mn0.8Mg0.2O2 in a Sodium-Ion Battery , 2015 .

[10]  Lin Gu,et al.  Air‐Stable Copper‐Based P2‐Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium‐Ion Batteries , 2015, Advanced science.

[11]  Yuesheng Wang,et al.  P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries , 2015, Nature Communications.

[12]  Yongyao Xia,et al.  A facile and novel organic coprecipitation strategy to prepare layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high capacity and excellent cycling stability , 2015 .

[13]  Xingguo Qi,et al.  Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries , 2015 .

[14]  Bei Wang,et al.  Electrochemical and structural study of layered P2-type Na(2/3)Ni(1/3)Mn(2/3)O2 as cathode material for sodium-ion battery. , 2015, Chemistry, an Asian journal.

[15]  E. Han,et al.  The effects of sodium additive on Li1.17Ni0.10Co0.10Mn0.63O2 for lithium ion batteries , 2015 .

[16]  K. Ye,et al.  Three-dimensional lamination-like P2-Na2/3Ni1/3Mn2/3O2 assembled with two-dimensional ultrathin nanosheets as the cathode material of an aqueous capacitor battery , 2014 .

[17]  A. Tanaka,et al.  Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries , 2014 .

[18]  B. Scrosati,et al.  High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium‐Ion Batteries , 2014 .

[19]  Xunhui Xiong,et al.  Beneficial effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the electrochemical properties of LiNi0.5Mn1.5O4 cathode material , 2014 .

[20]  K. Kubota,et al.  A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity , 2014 .

[21]  Yong Yang,et al.  Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries , 2014 .

[22]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[23]  Isaac M. Markus,et al.  Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries , 2014 .

[24]  Jung Han Lee,et al.  Structural and electrochemical evolution with post-annealing temperature of solution-based LiNi0.5Mn1.5O4 thin-film cathodes for microbatteries with cyclic stability , 2014 .

[25]  S. Passerini,et al.  Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material , 2014 .

[26]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[27]  K. Kubota,et al.  P2-Type Na2/3Ni1/3Mn2/3-xTixO2 as a 3.7 V Class Positive Electrode for Na-Ion Batteries , 2014 .

[28]  Jong-Ho Lee,et al.  Highly Palatable Food during Adolescence Improves Anxiety-Like Behaviors and Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Rats that Experienced Neonatal Maternal Separation , 2014, Endocrinology and metabolism.

[29]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[30]  M. Armand,et al.  Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries , 2014 .

[31]  K. Kubota,et al.  P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. , 2014, Chemical communications.

[32]  Atsuo Yamada,et al.  Kröhnkite-Type Na2Fe(SO4)2·2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries , 2014 .

[33]  Y. Orikasa,et al.  Pyrophosphate Na 2 FeP 2 O 7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid , 2014 .

[34]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[35]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[36]  B. Hwang,et al.  Simultaneous Reduction of Co3+ and Mn4+ in P2-Na2/3Co2/3Mn1/3O2 As Evidenced by X-ray Absorption Spectroscopy during Electrochemical Sodium Intercalation , 2014 .

[37]  Jing Xu,et al.  Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges , 2013 .

[38]  M. Armand,et al.  An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2 , 2013 .

[39]  M. Winter,et al.  P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries , 2013 .

[40]  M. Whittingham,et al.  An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4. , 2013, ACS applied materials & interfaces.

[41]  T. Rojo,et al.  Enhanced electrochemical performance of vanadyl (IV) Na3(VO) 2(PO4)2F by ex-situ carbon coating , 2013 .

[42]  Haoshen Zhou,et al.  Designing high-capacity cathode materials for sodium-ion batteries , 2013 .

[43]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[44]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[45]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[46]  Hiroyuki Yamaguchi,et al.  Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries , 2013 .

[47]  Yehui Zhang,et al.  Combustion synthesis and electrochemical performance of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability , 2013 .

[48]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[49]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[50]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[51]  Ayyakkannu Manivannan,et al.  Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes , 2013 .

[52]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[53]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[54]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[55]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[56]  K. Zaghib,et al.  Characterization of Na-based phosphate as electrode materials for electrochemical cells , 2011 .

[57]  Jun Liu,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[58]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[59]  S. Komaba,et al.  Structural and electrochemical behaviors of metastable Li2/3[Ni1/3Mn2/3]O2 modified by metal element substitution , 2009 .

[60]  J. Molenda,et al.  Electrical conductivity and reaction with lithium of LiFe1−yMnyPO4 olivine-type cathode materials , 2007 .

[61]  Kyung Yoon Chung,et al.  Novel synthesis of layered LiNi1/2Mn1/2O2 as cathode material for lithium rechargeable cells , 2004 .

[62]  Zhonghua Lu,et al.  In Situ X-Ray Diffraction Study of P 2 ­ Na2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 , 2001 .

[63]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[64]  R. Shanmugam,et al.  Study of Transport Properties and Interfacial Kinetics of Na2/3[Ni1/3MnxTi2/3-x]O2 (x = 0,1/3) as Electrodes for Na-Ion Batteries , 2015 .

[65]  P. Bruce,et al.  Review-Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials , 2015 .

[66]  Yong Yang,et al.  Promoting long-term cycling performance of high-voltage Li2CoPO4F by the stabilization of electrode/electrolyte interface , 2014 .

[67]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[68]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .