Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia

[1]  M. Cuénod,et al.  Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: Relevance to schizophrenia , 2006, Neuroscience.

[2]  R. Rodriguiz,et al.  Monoaminergic dysregulation in glutathione-deficient mice: Possible relevance to schizophrenia? , 2005, Neuroscience.

[3]  Andrew L. Lemire,et al.  Deficient Hippocampal Neuron Expression of Proteasome, Ubiquitin, and Mitochondrial Genes in Multiple Schizophrenia Cohorts , 2005, Biological Psychiatry.

[4]  B. Moghaddam,et al.  Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia , 2005, Biological Psychiatry.

[5]  M. Cuénod,et al.  An animal model with relevance to schizophrenia: sex-dependent cognitive deficits in osteogenic disorder-Shionogi rats induced by glutathione synthesis and dopamine uptake inhibition during development , 2004, Neuroscience.

[6]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[7]  R. Yolken,et al.  Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress , 2004, Molecular Psychiatry.

[8]  J. Buxbaum,et al.  Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia , 2004, Nature Neuroscience.

[9]  Guosong Liu,et al.  Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites , 2004, Nature Neuroscience.

[10]  I. Tetko,et al.  Parvalbumin deficiency affects network properties resulting in increased susceptibility to epileptic seizures , 2004, Molecular and Cellular Neuroscience.

[11]  M. Owen,et al.  A mitochondrial DNA sequence variant associated with schizophrenia and oxidative stress , 2003, Schizophrenia Research.

[12]  M. Cuénod,et al.  Dopamine-induced oxidative stress in neurons with glutathione deficit: implication for schizophrenia , 2003, Schizophrenia Research.

[13]  A. Sampson,et al.  Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia , 2003, The Journal of Neuroscience.

[14]  B. Morris,et al.  Induction of Metabolic Hypofunction and Neurochemical Deficits after Chronic Intermittent Exposure to Phencyclidine: Differential Modulation by Antipsychotic Drugs , 2003, Neuropsychopharmacology.

[15]  Paul J. Harrison,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group. Genes for Schizophrenia? Recent Findings and Their Pathophysiological Implications , 2022 .

[16]  D. Nebert,et al.  Initial Characterization of the Glutamate-Cysteine Ligase Modifier Subunit Gclm(−/−) Knockout Mouse , 2002, The Journal of Biological Chemistry.

[17]  K. Do,et al.  New model of glutathione deficit during development: Effect on lipid peroxidation in the rat brain , 2002, Journal of neuroscience research.

[18]  H. You,et al.  Postnatal development of parvalbumin and calbindin D-28k immunoreactivities in the canine anterior cingulate cortex: transient expression in layer V pyramidal cells , 2002, International Journal of Developmental Neuroscience.

[19]  C. Beasley,et al.  Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins , 2002, Biological Psychiatry.

[20]  Gavin P. Reynolds,et al.  A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia , 2002, Schizophrenia Research.

[21]  J. Shumsky,et al.  Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex , 2001, Neuroscience.

[22]  J. Pierri,et al.  Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. , 2001, The American journal of psychiatry.

[23]  C. Beasley,et al.  Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity , 2001, Brain Research Bulletin.

[24]  C. Beasley,et al.  GABAergic neuronal subtypes in the human frontal cortex — development and deficits in schizophrenia , 2001, Journal of Chemical Neuroanatomy.

[25]  Freya Q. Schafer,et al.  Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. , 2001, Free radical biology & medicine.

[26]  P. Levitt,et al.  Identification of a sensitive period of prenatal cocaine exposure that alters the development of the anterior cingulate cortex. , 2001, Cerebral cortex.

[27]  W H Wong,et al.  Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Guillery,et al.  Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body , 2000, Neuroscience.

[29]  Pat Levitt,et al.  Molecular Characterization of Schizophrenia Viewed by Microarray Analysis of Gene Expression in Prefrontal Cortex , 2000, Neuron.

[30]  P Boesiger,et al.  Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo , 2000, The European journal of neuroscience.

[31]  S. Lipton,et al.  Redox modulation of the NMDA receptor , 2000, Cellular and Molecular Life Sciences CMLS.

[32]  S Marenco,et al.  The neurodevelopmental hypothesis of schizophrenia: Following a trail of evidence from cradle to grave , 2000, Development and Psychopathology.

[33]  M. Fagiolini,et al.  Inhibitory threshold for critical-period activation in primary visual cortex , 2000, Nature.

[34]  N. Andreasen Schizophrenia: the fundamental questions , 2000, Brain Research Reviews.

[35]  A. Sampson,et al.  Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. , 2000, Archives of general psychiatry.

[36]  D. Lewis GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia , 2000, Brain Research Reviews.

[37]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[38]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[39]  J. Pierri,et al.  Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. , 1999, The American journal of psychiatry.

[40]  A. Posada,et al.  Relationships between neuronal death and the cellular redox status. Focus on the developing nervous system , 1999, Progress in Neurobiology.

[41]  J. Hornung,et al.  Dopamine Affects Parvalbumin Expression during Cortical Development In Vitro , 1999, The Journal of Neuroscience.

[42]  P. McKenna,et al.  Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABAA receptor α-1 subunit messenger RNA and human GABA transporter-1 (hGAT-1) messenger RNA expression , 1999, Neuroscience.

[43]  S. Moss,et al.  Modulation of neuronal and recombinant GABAA receptors by redox reagents , 1999, The Journal of physiology.

[44]  P. Goldman-Rakic,et al.  The reduced neuropil hypothesis: a circuit based model of schizophrenia , 1999, Biological Psychiatry.

[45]  T. Hastings,et al.  Role of Endogenous Glutathione in the Oxidation of Dopamine , 1998, Journal of neurochemistry.

[46]  S. Hirsch,et al.  Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia , 1998, Journal of neurology, neurosurgery, and psychiatry.

[47]  G. Leuba,et al.  Quantitative Distribution of Parvalbumin, Calretinin, and Calbindin D-28k Immunoreactive Neurons in the Visual Cortex of Normal and Alzheimer Cases , 1998, Experimental Neurology.

[48]  T. Woo,et al.  A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P. Goldman-Rakic,et al.  Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: Application of a three‐dimensional, stereologic counting method , 1998, The Journal of comparative neurology.

[50]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[51]  G. Chiara,et al.  Contribution of Blockade of the Noradrenaline Carrier to the Increase of Extracellular Dopamine in the Rat Prefrontal Cortex by Amphetamine and Cocaine , 1997, European Journal of Neuroscience.

[52]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[53]  T. Deerinck,et al.  Subcellular localization of the K+ channel subunit Kv3.1b in selected rat CNS neurons , 1997, Brain Research.

[54]  M. C. Angulo,et al.  Molecular and Physiological Diversity of Cortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[55]  D. O'Dowd,et al.  Differential Expression of K4-AP Currents and Kv3.1 Potassium Channel Transcripts in Cortical Neurons that Develop Distinct Firing Phenotypes , 1997, The Journal of Neuroscience.

[56]  C. Beasley,et al.  Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics , 1997, Schizophrenia Research.

[57]  K. Martin,et al.  Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat , 1997, The Journal of comparative neurology.

[58]  A. Malhotra,et al.  Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[59]  E. Murphy,et al.  Altered neuronal distribution of parvalbumin in anterior cingulate cortex of rabbits exposed in utero to cocaine , 1996, Experimental Brain Research.

[60]  K. Rice,et al.  Development of novel, potent, and selective dopamine reuptake inhibitors through alteration of the piperazine ring of 1-[2-(diphenylmethoxy)ethyl]-and 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazines (GBR 12935 and GBR 12909). , 1996, Journal of medicinal chemistry.

[61]  P. Reade,et al.  Determination of the L-ascorbic acid requirements in Wistar osteogenic disorder Shionogi rats for prolonged carcinogenesis experiments , 1996, Laboratory Animals. Journal of the Laboratory Animal Science Association.

[62]  J. Krystal,et al.  Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[63]  K. Collard,et al.  Changes in brain glutathione levels during postnatal development in the rat. , 1996, Brain research. Developmental brain research.

[64]  S. Mukherjee,et al.  Free radical pathology and antioxidant defense in schizophrenia: a review , 1996, Schizophrenia Research.

[65]  S. Hendry,et al.  Regulation of calcium-binding protein immunoreactivity in GABA neurons of macaque primary visual cortex. , 1996, Cerebral cortex.

[66]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions , 1996, The Journal of comparative neurology.

[67]  F. Holsboer,et al.  γ‐Glutamylglutamine and Taurine Concentrations Are Decreased in the Cerebrospinal Fluid of Drug‐Naive Patients with Schizophrenic Disorders , 1995, Journal of neurochemistry.

[68]  A. Hendrickson,et al.  Transient co-localization of calretinin, parvalbumin, and calbindin-D28k in developing visual cortex of monkey , 1995, Journal of neurocytology.

[69]  J. DeFelipe,et al.  A light and electron microscopic study of calbindin D-28k immunoreactive double bouquet cells in the human temporal cortex , 1995, Brain Research.

[70]  E. G. Jones,et al.  Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. , 1995, Archives of general psychiatry.

[71]  Z. Pan,et al.  Differential modulation by sulfhydryl redox agents and glutathione of GABA- and glycine-evoked currents in rat retinal ganglion cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  Y. Kubota,et al.  Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex , 1994, Brain Research.

[73]  H. Monyer,et al.  NMDA receptor channels: Subunit-specific potentiation by reducing agents , 1994, Neuron.

[74]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[75]  E. G. Jones,et al.  GABAergic neurons and their role in cortical plasticity in primates. , 1993, Cerebral cortex.

[76]  Joseph Loscalzo,et al.  A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds , 1993, Nature.

[77]  I. Ferrer,et al.  Chandelier cell axons identified by parvalbumin-immunoreactivity in the normal human temporal cortex and in Alzheimer's disease , 1993, Neuroscience.

[78]  I. Ferrer,et al.  Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat , 1993, Anatomy and Embryology.

[79]  E. Aizenman,et al.  The modulation of N‐methyl‐D‐aspartate receptors by redox and alkylating reagents in rat cortical neurones in vitro. , 1993, The Journal of physiology.

[80]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[81]  A. Meister,et al.  Glutathione deficiency increases hepatic ascorbic acid synthesis in adult mice. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[82]  L. Maffei,et al.  Parvalbumin immunoreactivity: A reliable marker for the effects of monocular deprivation in the rat visual cortex , 1992, Neuroscience.

[83]  Barry Halliwell,et al.  Reactive Oxygen Species and the Central Nervous System , 1992, Journal of neurochemistry.

[84]  A. Hendrickson,et al.  Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat , 1991, Neuroscience.

[85]  F. Benes,et al.  Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. , 1991, Archives of general psychiatry.

[86]  J. DeFelipe,et al.  Parvalbumin immunoreactivity reveals layer IV of monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations , 1991, Brain Research.

[87]  E. G. Jones,et al.  Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity , 1989, Brain Research.

[88]  J. Morrison,et al.  Ultrastructural analysis of somatostatin‐immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[89]  E G Jones,et al.  Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[90]  J. E. Vaughn,et al.  Synaptic organization of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex , 1983, Journal of neurocytology.

[91]  A. Cowey,et al.  The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey , 1982, Neuroscience.

[92]  Paul J. Harrison,et al.  Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence , 2005, Molecular Psychiatry.

[93]  E. G. Jones,et al.  Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities , 2004, Experimental Brain Research.

[94]  M. Cuénod,et al.  Schizophrenia patients show reduced expression of the glutathione related genes , 2004 .

[95]  J. Coyle,et al.  NMDA receptor function, neuroplasticity, and the pathophysiology of schizophrenia. , 2004, International review of neurobiology.

[96]  David A Lewis,et al.  Schizophrenia as a disorder of neurodevelopment. , 2002, Annual review of neuroscience.

[97]  A Carlsson,et al.  Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. , 2001, Annual review of pharmacology and toxicology.

[98]  H. Herken,et al.  Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia , 2001, Molecular Psychiatry.

[99]  D. Lewis,et al.  Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. , 2000, Archives of general psychiatry.

[100]  A. Meister [3] Glutathione biosynthesis and its inhibition , 1995 .