Engineering und Charakterisierung von funktionalem osteochondralem Ersatzgewebe

ZusammenfassungAusgedehnte osteochondrale Defekte erfordern eine Reparatur des Knorpels und des subchondralen Knochens. Wir erzeugten osteochondrales Ersatzgewebe mittels Tissue Engineering. 7×5×5 mm große standardisierte Defekte wurden im femoropatellaren Gleitlager von adulten Kaninchen erzeugt. Konstrukte, die in vitro aus Chondrozyten und abbaubarem Trägermaterial generiert wurden, wurden mit Collagraft als subchondralem Trägermaterial implantiert. Kontrollen bestanden aus zellfreien Implantaten, Leerdefekten und nichtoperierten Kniegelenken. Die Explantate wurden mechanisch und histologisch untersucht. Nach 6 Monaten waren die Implantate, die mit Hilfe von Tissue Engineering erzeugt wurden, histologisch und biomechanisch besser als zellfreie Implantate und Leerkontrollen. Mit Tissue Engineering erzeugter Knorpel weist eine Stabilität auf, die die Behandlung osteochondraler Defekte erlaubt.AbstractExtensive osteochondral lesions require repair of the cartilage and underlying bone. We generated osteochondral repair tissue by tissue engineering. Standardized defects, 7×5×5 mm, were created in femoropatellar grooves of adult rabbits. Engineered cartilage, generated in vitro starting from chondrocytes and a biodegradable scaffold, was implanted using Collagraft as subchondral support. Cell-free implants, defects left empty, and unoperated knee joints served as controls. Explants were characterized morphologically and mechanically. Engineered cartilage implants were superior to cell-free implants and to natural healing of empty defects with respect to the histologic score and Young’s modulus of the 6-month repair tissue. These data suggest that engineered cartilage can provide primary stability for the treatment of critical osteochondral defects.

[1]  Robert Langer,et al.  Biodegradable Polymer Scaffolds for Tissue Engineering , 1994, Bio/Technology.

[2]  T. Koob,et al.  Early changes in material properties of rabbit articular cartilage after meniscectomy , 1983, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[3]  R. Teasdall,et al.  Torsional properties of healed canine diaphyseal defects grafted with a fibrillar collagen and hydroxyapatite/tricalcium phosphate composite. , 1994, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[4]  S. O’Driscoll The healing and regeneration of articular cartilage. , 1998, The Journal of bone and joint surgery. American volume.

[5]  C. D. Han,et al.  An experimental intraarticular implantation of woven carbon fiber pad into osteochondral defect of the femoral condyle in rabbit. , 1991, Yonsei medical journal.

[6]  G. Vunjak‐Novakovic,et al.  Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. , 1999, Experimental cell research.

[7]  S. O’Driscoll,et al.  Articular cartilage regeneration using periosteum. , 1999, Clinical orthopaedics and related research.

[8]  Alan Grodzinsky,et al.  Tissue-engineered composites for the repair of large osteochondral defects. , 2002, Arthritis and rheumatism.

[9]  Kyriacos A. Athanasiou,et al.  Biodegradable Implants for the Treatment of Osteochondral Defects in a Goat Model , 1997 .

[10]  Vassilios Sikavitsas,et al.  Tissue Engineering Bioreactors , 2006 .

[11]  D Amiel,et al.  Osteochondral Repair Using Perichondrial Cells: A 1-Year Study in Rabbits , 1997, Clinical orthopaedics and related research.

[12]  S. O’Driscoll Preclinical cartilage repair: current status and future perspectives. , 2001, Clinical orthopaedics and related research.

[13]  W. Hayes,et al.  A mathematical analysis for indentation tests of articular cartilage. , 1972, Journal of biomechanics.

[14]  V. Goldberg,et al.  Hyaluronan‐based polymers in the treatment of osteochondral defects , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[15]  J. Buckwalter,et al.  Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[16]  B. Rahn,et al.  Alizarinkompléxon — Fluorochrom zur Markierung von Knochen- und Dentinanbau , 1972, Experientia.

[17]  E. J. Frazza,et al.  A new absorbable suture. , 1971, Journal of biomedical materials research.