A new framework of multi-objective evolutionary algorithms for feature selection and multi-label classification of video data

[1]  Diptendu Sinha Roy,et al.  Multiobjective hybrid monarch butterfly optimization for imbalanced disease classification problem , 2019, International Journal of Machine Learning and Cybernetics.

[2]  Tansel Dökeroglu,et al.  A survey on new generation metaheuristic algorithms , 2019, Comput. Ind. Eng..

[3]  Giancarlo Mauri,et al.  Biochemical parameter estimation vs. benchmark functions: A comparative study of optimization performance and representation design , 2019, Appl. Soft Comput..

[4]  Giancarlo Mauri,et al.  A novel framework for MR image segmentation and quantification by using MedGA , 2019, Comput. Methods Programs Biomed..

[5]  Giuseppe De Pietro,et al.  Deep neural network for hierarchical extreme multi-label text classification , 2019, Appl. Soft Comput..

[6]  Giancarlo Mauri,et al.  MedGA: A novel evolutionary method for image enhancement in medical imaging systems , 2019, Expert Syst. Appl..

[7]  Tansel Dökeroglu,et al.  Evolutionary parallel extreme learning machines for the data classification problem , 2019, Comput. Ind. Eng..

[8]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Inducing Hierarchical Multi-label Classification rules with Genetic Algorithms , 2019, Appl. Soft Comput..

[9]  Guixia Liu,et al.  Feature selection considering weighted relevancy , 2018, Applied Intelligence.

[10]  Zili Zhang,et al.  Incomplete Multi-View Weak-Label Learning , 2018, IJCAI.

[11]  R. Sasikala,et al.  Genetic algorithm based feature selection and MOE Fuzzy classification algorithm on Pima Indians Diabetes dataset , 2017, 2017 International Conference on Computing Networking and Informatics (ICCNI).

[12]  Johannes Fürnkranz,et al.  Multi-objective Optimisation-Based Feature Selection for Multi-label Classification , 2017, NLDB.

[13]  Tansel Dökeroglu,et al.  Robust multiobjective evolutionary feature subset selection algorithm for binary classification using machine learning techniques , 2017, Neurocomputing.

[14]  D. Gong,et al.  A PSO-based multi-objective multi-label feature selection method in classification , 2017, Scientific Reports.

[15]  Xinghuo Yu,et al.  An Evolutionary Based Multi-Objective Filter Approach for Feature Selection , 2017, 2017 World Congress on Computing and Communication Technologies (WCCCT).

[16]  Francisco Charte,et al.  Multilabel Classification , 2016, Springer International Publishing.

[17]  Jorge Cadima,et al.  Principal component analysis: a review and recent developments , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Beatriz de la Iglesia,et al.  Survey on Feature Selection , 2015, ArXiv.

[19]  Jianhua Xu,et al.  A Multi-label feature selection algorithm based on multi-objective optimization , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[20]  Amit Chhabra,et al.  Improved J48 Classification Algorithm for the Prediction of Diabetes , 2014 .

[21]  Agma J. M. Traina,et al.  MFS-Map: efficient context and content combination to annotate images , 2014, SAC.

[22]  Jyoti,et al.  Multi-objective genetic algorithm approach to feature subset optimization , 2014, 2014 IEEE International Advance Computing Conference (IACC).

[23]  Mengjie Zhang,et al.  Particle Swarm Optimization for Feature Selection in Classification: A Multi-Objective Approach , 2013, IEEE Transactions on Cybernetics.

[24]  Jacob Scharcanski,et al.  Feature selection for face recognition based on multi-objective evolutionary wrappers , 2013, Expert Syst. Appl..

[25]  Agma J. M. Traina,et al.  An Efficient Algorithm for Fractal Analysis of Textures , 2012, 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images.

[26]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[27]  Hao Wu,et al.  An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine , 2011, Knowl. Based Syst..

[28]  Alex Zelinsky,et al.  Learning OpenCV---Computer Vision with the OpenCV Library (Bradski, G.R. et al.; 2008)[On the Shelf] , 2009, IEEE Robotics & Automation Magazine.

[29]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[30]  Ji Gao,et al.  Fast training Support Vector Machines using parallel sequential minimal optimization , 2008, 2008 3rd International Conference on Intelligent System and Knowledge Engineering.

[31]  Geoff Holmes,et al.  Multi-label Classification Using Ensembles of Pruned Sets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[32]  Mark J. Huiskes,et al.  The MIR flickr retrieval evaluation , 2008, MIR '08.

[33]  Francis R. Bach,et al.  Bolasso: model consistent Lasso estimation through the bootstrap , 2008, ICML '08.

[34]  Grigorios Tsoumakas,et al.  Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.

[35]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[36]  Fakhri Karray,et al.  Multi-objective Feature Selection with NSGA II , 2007, ICANNGA.

[37]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[38]  Peter I. Cowling,et al.  MMAC: a new multi-class, multi-label associative classification approach , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[39]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[40]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[41]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[42]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[43]  W. Stadler A survey of multicriteria optimization or the vector maximum problem, part I: 1776–1960 , 1979 .

[44]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[45]  M. Kubát An Introduction to Machine Learning , 2017, Springer International Publishing.

[46]  Jian Cheng,et al.  Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification , 2017, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[47]  Geoff Holmes,et al.  MEKA: A Multi-label/Multi-target Extension to WEKA , 2016, J. Mach. Learn. Res..

[48]  Nikita Joshi,et al.  A Review Paper on Feature Selection Methodologies and Their Applications , 2014 .

[49]  Neeraj Bhargava,et al.  Decision Tree Analysis on J48 Algorithm for Data Mining , 2013 .

[50]  António Gaspar-Cunha,et al.  Feature Selection Using Multi-Objective Evolutionary Algorithms: Application to Cardiac SPECT Diagnosis , 2010, IWPACBB.

[51]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .