Microstructural Evolution and Mechanical Behavior of W-Si-C Multi-phase Composite Prepared by Arc-melting

[1]  C. S. Liu,et al.  First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute , 2016 .

[2]  J. Ning,et al.  Microstructure and mechanical properties of W-Zr reactive materials , 2016 .

[3]  Yuelin Liu,et al.  First-principles investigation on mechanical behaviors of W-Cr/Ti binary alloys , 2016 .

[4]  X. P. Wang,et al.  Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature , 2015, Scientific Reports.

[5]  A. Ivekovič,et al.  Low-activation W–Si–C composites for fusion application , 2015 .

[6]  X. P. Wang,et al.  Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W–Y2O3 , 2015 .

[7]  C. S. Liu,et al.  Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys , 2015 .

[8]  A. Hasegawa,et al.  Effects of temperature and strain rate on the tensile properties of potassium-doped tungsten , 2015 .

[9]  G. Wen,et al.  Thermodynamic modeling of the C–W–Zr system , 2015 .

[10]  X. Li,et al.  Unusual ferromagnetism enhancement in ferromagnetically optimal manganite La0.7−yCa0.3+yMn1−yRuyO3 (0≤y<0.3): the role of Mn-Ru t2g super-exchange , 2015, Scientific Reports.

[11]  K. Rajan,et al.  Ion-irradiation-induced clustering in W–Re and W–Re–Os alloys: A comparative study using atom probe tomography and nanoindentation measurements , 2015 .

[12]  Zi-kui Liu,et al.  Glass formability of W-based alloys through thermodynamic modeling: W–Fe–Hf–Pd–Ta and W–Fe–Si–C , 2014 .

[13]  Dong Ju Lee,et al.  The effect of HfC content on mechanical properties HfC–W composites , 2014 .

[14]  Ye-hua Jiang,et al.  Mechanical properties and chemical bonding characteristics of WC and W2C compounds , 2014 .

[15]  Ruixiao Zheng,et al.  Effect of high volume fraction of B4C particles on the microstructure and mechanical properties of aluminum alloy based composites , 2013 .

[16]  Seokwoo Jeon,et al.  The effect of sintering conditions and ZrN volume fraction on the mechanical properties of spark plasma sintered W/ZrN composites , 2012 .

[17]  W. Setyawan,et al.  Effects of transition metals on the grain boundary cohesion in tungsten , 2012 .

[18]  Seokwoo Jeon,et al.  Microstructure and mechanical properties of SiC-nanowire-augmented tungsten composites , 2011 .

[19]  A. Hoffmann,et al.  Fracture strength and microstructure of ODS tungsten alloys , 2010 .

[20]  Aziz Genç,et al.  Microstructural characterizations of Ni activated sintered W–2 wt% TiC composites produced via mechanical alloying , 2010 .

[21]  C. Ambrosch-Draxl,et al.  Effect of rhenium on the dislocation core structure in tungsten. , 2010, Physical review letters.

[22]  C. Colinet,et al.  First-principles study of the structural, electronic and elastic properties of W5Si3 , 2010 .

[23]  Z. Qiao,et al.  Thermodynamic Assessment of the Si-Ta and Si-W Systems , 2009 .

[24]  Kyu Cho,et al.  Grain size engineering of bcc refractory metals: Top-down and bottom-up—Application to tungsten , 2007 .

[25]  F. Oliveira,et al.  Synthesis of tungsten sub-carbide W2C from graphite/tungsten powder mixtures by eruptive heating in a solar furnace , 2007 .

[26]  C. A. Nunes,et al.  Thermal expansion of the V5Si3 and T2 phases of the V–Si–B system investigated by high-temperature X-ray diffraction , 2007 .

[27]  K. T. Ramesh,et al.  Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion , 2006 .

[28]  N. Hansen,et al.  Hall–Petch relation and boundary strengthening , 2004 .

[29]  Hyoung-Seop Kim,et al.  On the rule of mixtures for the hardness of particle reinforced composites , 2000 .

[30]  P. Barnes,et al.  Calculations of tungsten silicide and carbide formation on SiC using the Gibbs free energy , 2000 .

[31]  K. T. Ramesh,et al.  The thermoviscoplastic response of polycrystalline tungsten in compression , 2000 .

[32]  A. Mukhopadhyay,et al.  Fracture toughness of structural ceramics , 1999 .

[33]  A. Hartmaier,et al.  Controlling factors for the brittle-to-ductile transition in tungsten single crystals , 1998, Science.

[34]  M. Mabuchi,et al.  Deformation behavior and strengthening mechanisms at intermediate temperatures in W-La2O3 , 1997 .

[35]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[36]  R. Bradt,et al.  Eutectic Solidification in Ceramic Systems , 1981 .

[37]  J. R. Stephens Dislocation structures in single-crystal tungsten and tungsten alloys , 1970 .

[38]  P. Shaffer Plenum Press Handbooks of High-Temperature Materials , 1963 .

[39]  H. Braun,et al.  Tungsten alloys of high melting point , 1959 .

[40]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .