Selecting two-photon sequential ionization pathways in H2 through harmonic filtering.

Recent experiments in gas-phase molecules have shown the versatility of using attosecond pulse trains combined with IR femtosecond pulses to track and control excitation and ionization yields on the attosecond timescale. The interplay between electron and nuclear motions drives the light-induced transitions favoring specific reaction paths, so that the time delay between the pulses can be used as the tracking parameter or as a control knob to manipulate the molecular dynamics. Here, we present ab initio simulations on the hydrogen molecule to demonstrate that by filtering the high harmonics in an attosecond pulse train one can quench or enhance specific quantum paths thus dictating the outcome of the reaction. It is then possible to discriminate the dominant sequential processes in two-photon ionization, as for example molecular excitation followed by ionization or the other way around. More interestingly, frequency filters can be employed to steer the one- and two-photon yields to favor electron emission in a specific direction.

[1]  F. Martín,et al.  Attosecond laser control of photoelectron angular distributions in XUV-induced ionization of H2. , 2021, Faraday discussions.

[2]  Jun Ye,et al.  Extreme-ultraviolet frequency combs for precision metrology and attosecond science , 2021, Nature Photonics.

[3]  T. Witting,et al.  Extreme-ultraviolet spectral compression by four-wave mixing , 2021, Nature Photonics.

[4]  P. Johnsson,et al.  Α 10-gigawatt attosecond source for non-linear XUV optics and XUV-pump-XUV-probe studies , 2020, Scientific Reports.

[5]  A. Palacios,et al.  Off-resonance-enhanced polarization control in two-color atomic ionization , 2020 .

[6]  T. Pfeifer,et al.  Attosecond precision in delay measurements using transient absorption spectroscopy. , 2019, Optics letters.

[7]  T. Fortier,et al.  20 years of developments in optical frequency comb technology and applications , 2019, Communications Physics.

[8]  Luca Poletto,et al.  A High Resolution XUV Grating Monochromator for the Spectral Selection of Ultrashort Harmonic Pulses , 2019, Applied Sciences.

[9]  U. Kleineberg,et al.  Attosecond Pulse Shaping by Multilayer Mirrors , 2018, Applied Sciences.

[10]  Leigh S. Martin,et al.  Revealing the role of electron-electron correlations by mapping dissociation of highly excited D2+ using ultrashort XUV pulses , 2018, Physical Review A.

[11]  Ursula Keller,et al.  Attosecond coupled electron and nuclear dynamics in dissociative ionization of H2 , 2018 .

[12]  R. Feifel,et al.  Photoionization in the time and frequency domain , 2017, Science.

[13]  G. Halász,et al.  Strong field dissociative ionization of the D2+: Nuclear wave packet analysis , 2017 .

[14]  Mauro Nisoli,et al.  Attosecond Electron Dynamics in Molecules. , 2017, Chemical reviews.

[15]  F. Martín,et al.  Mapping and controlling ultrafast dynamics of highly excited H2 molecules by VUV-IR pump-probe schemes , 2017 .

[16]  W. Schlotter,et al.  Polarization control in an X-ray free-electron laser , 2016, Nature Photonics.

[17]  Salvatore Stagira,et al.  Advances in attosecond science , 2016 .

[18]  G. Halász,et al.  Toward the Full Quantum Dynamical Description of Photon Induced Processes in D2. , 2016, The journal of physical chemistry. A.

[19]  F. Martín,et al.  Theoretical methods for attosecond electron and nuclear dynamics: applications to the H2 molecule , 2015 .

[20]  Joseph S. Robinson,et al.  Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV , 2014, Nature Communications.

[21]  L. Poletto,et al.  Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses , 2014, Science.

[22]  Klaus Jansen,et al.  Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers , 2014 .

[23]  A. Erko,et al.  Monochromatization of femtosecond XUV light pulses with the use of reflection zone plates. , 2014, Optics express.

[24]  Leigh S. Martin,et al.  Attosecond vacuum UV coherent control of molecular dynamics , 2013, Proceedings of the National Academy of Sciences.

[25]  F. Martín,et al.  Autoionization of molecular hydrogen: where do the Fano lineshapes go? , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  M. Laux,et al.  Fractional high-order harmonic combs and energy tuning by attosecond-precision split-spectrum pulse control , 2012 .

[27]  M. Murnane,et al.  Probing and controlling non-Born–Oppenheimer dynamics in highly excited molecular ions , 2012, Nature Physics.

[28]  Ferenc Krausz,et al.  Attosecond dispersion control by extreme ultraviolet multilayer mirrors. , 2011, Optics express.

[29]  Mauro Nisoli,et al.  Electron localization following attosecond molecular photoionization , 2010, Nature.

[30]  U. Keller,et al.  Spectral signature of short attosecond pulse trains. , 2008, Physical review letters.

[31]  S. I. Strakhova,et al.  Polarization control in two-color above-threshold ionization of atomic helium. , 2008, Physical review letters.

[32]  U. Kleineberg,et al.  Single-Cycle Nonlinear Optics , 2008, Science.

[33]  P. Balcou,et al.  Broadband Attosecond Pulse Shaping , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[34]  F. Martín,et al.  Two-photon ionization of H{sub 2}{sup +} by short laser pulses , 2005 .

[35]  P. Balcou,et al.  Observation of a Train of Attosecond Pulses from High Harmonic Generation , 2001, Science.

[36]  U. Heinzmann,et al.  Laser-based apparatus for extended ultraviolet femtosecond time-resolved photoemission spectroscopy , 2001 .

[37]  F. Martín Ionization and dissociation using B-splines: photoionization of the hydrogen molecule , 1999 .

[38]  F. Martín,et al.  Multichannel close-coupling method with L2 integrable bases , 1994 .