Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers

The purpose of this work is to present in a general framework the hybrid discretization of unilateral contact and friction conditions in elastostatics. A projection formulation is developed and used. An existence and uniqueness results for the solutions to the discretized problem is given in the general framework. Several numerical methods to solve the discretized problem are presented (Newton, SOR, fixed points, Uzawa) and compared in terms of the number of iterations and the robustness with respect to the value of the friction coefficient.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  P. W. Christensen,et al.  Frictional Contact Algorithms Based on Semismooth Newton Methods , 1998 .

[3]  P. D. Panagiotopoulos,et al.  Coercive and semicoercive hemivariational inequalities , 1991 .

[4]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[5]  N. Strömberg An augmented Lagrangian method for fretting problems , 1997 .

[6]  Patrick Laborde,et al.  Fixed point strategies for elastostatic frictional contact problems , 2008 .

[7]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[8]  F. Lebon,et al.  Contact problems with friction: models and simulations , 2003, Simul. Model. Pract. Theory.

[9]  A. Klarbring,et al.  FRICTIONAL CONTACT PROBLEMS WITH NORMAL COMPLIANCE , 1988 .

[10]  Jaroslav Haslinger,et al.  Finite Element Method for Hemivariational Inequalities , 1999 .

[11]  Patrick Hild,et al.  Quadratic finite element methods for unilateral contact problems , 2002 .

[12]  Faker Ben Belgacem,et al.  Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..

[13]  F. B. Belgacema,et al.  A mixed formulation for the Signorini problem in nearly incompressible elasticity ✩ , 2005 .

[14]  P. Panagiotopoulos,et al.  Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications , 1999 .

[15]  J. Haslinger,et al.  Implementation of the fixed point method in contact problems with Coulomb friction based on a dual splitting type technique , 2002 .

[16]  G. De Saxce,et al.  Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives , 1992 .

[17]  Ivo Babuška,et al.  The Babuška-Brezzi condition and the patch test: an example , 1997 .

[19]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[20]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[21]  Jaroslav Haslinger,et al.  Approximation of the signorini problem with friction, obeying the coulomb law , 1983 .

[22]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[23]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[24]  J. Moreau Une formulation du contact à frottement sec; application au calcul numérique , 1986 .