Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 1: Model description, annual simulations and evaluation

Abstract. We describe and evaluate the NMMB/BSC-Dust, a new dust aerosol cycle model embedded online within the NCEP Non-hydrostatic Multiscale Model (NMMB). NMMB is a further evolution of the operational Non-hydrostatic Mesoscale Model (WRF-NMM), which together with other upgrades has been extended from meso to global scales. Its unified non-hydrostatic dynamical core is prepared for regional and global simulation domains. The new NMMB/BSC-Dust is intended to provide short to medium-range weather and dust forecasts from regional to global scales and represents a first step towards the development of a unified chemical-weather model. This paper describes the parameterizations used in the model to simulate the dust cycle including sources, transport, deposition and interaction with radiation. We evaluate monthly and annual means of the global configuration of the model against the AEROCOM dust benchmark dataset for year 2000 including surface concentration, deposition and aerosol optical depth (AOD), and we evaluate the daily AOD variability in a regional domain at high resolution covering Northern Africa, Middle East and Europe against AERONET AOD for year 2006. The NMMB/BSC-Dust provides a good description of the horizontal distribution and temporal variability of the dust. Daily AOD correlations at the regional scale are around 0.6–0.7 on average without dust data assimilation. At the global scale the model lies within the top range of AEROCOM dust models in terms of performance statistics for surface concentration, deposition and AOD. This paper discusses the current strengths and limitations of the modeling system and points towards future improvements.

[1]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .

[2]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[3]  F. Volz,et al.  Infrared optical constants of ammonium sulfate, sahara dust, volcanic pumice, and flyash. , 1973, Applied optics.

[4]  J. Hansen,et al.  A parameterization for the absorption of solar radiation in the earth's atmosphere , 1974 .

[5]  Stephen B. Fels,et al.  The Simplified Exchange Approximation: A New Method for Radiative Transfer Calculations , 1975 .

[6]  E. M. Patterson,et al.  Commonalities in measured size distributions for aerosols having a soil-derived component , 1977 .

[7]  B. White,et al.  Soil Transport by Winds on Mars , 1979 .

[8]  J. Joseph,et al.  Properties of Sharav (Khamsin) Dust–Comparison of Optical and Direct Sampling Data , 1980 .

[9]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[10]  W. Slinn,et al.  Predictions for particle deposition to vegetative canopies , 1982 .

[11]  B. R. White,et al.  Saltation threshold on Earth, Mars and Venus , 1982 .

[12]  S. Rutledge,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands , 1983 .

[13]  P. T. Willis,et al.  Functional fits to some observed drop size distributions and parameterization of rain , 1984 .

[14]  Zavisa Janjic,et al.  Nonlinear Advection Schemes and Energy Cascade on Semi-Staggered Grids , 1984 .

[15]  Peter V. Hobbs,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands , 1984 .

[16]  Alan K. Betts,et al.  A new convective adjustment scheme , 1985 .

[17]  E. Shettle,et al.  Optical and Radiative Properties of a Desert Aerosol Model , 1986 .

[18]  A. Betts,et al.  A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets , 1986 .

[19]  A. Betts A new convective adjustment scheme. Part I: Observational and theoretical basis , 1986 .

[20]  G. d’Almeida,et al.  On the variability of desert aerosol radiative characteristics , 1987 .

[21]  D. Gillette,et al.  The effect of nonerodible particles on wind erosion of erodible surfaces , 1989 .

[22]  Zavisa Janjic,et al.  The Step-Mountain Coordinate: Physical Package , 1990 .

[23]  G. Gutman,et al.  Dust Intrusion Events into the Mediterranean Basin. , 1991 .

[24]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[25]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[26]  R. Duce,et al.  Trace elements in the atmosphere over the North Atlantic , 1995 .

[27]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[28]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[29]  B. Marticorena,et al.  Assessing the microped size distributions of desert soils erodible by wind , 1996 .

[30]  Bernard Aumont,et al.  Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources , 1997 .

[31]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[32]  Jean-Pierre Blanchet,et al.  Modeling sea-salt aerosols in the atmosphere 1. Model development , 1997 .

[33]  M. Schulz,et al.  Role of aerosol size distribution and source location in a three‐dimensional simulation of a Saharan dust episode tested against satellite‐derived optical thickness , 1998 .

[34]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[35]  Larry D. Travis,et al.  Light Scattering by Nonspherical Particles , 1998 .

[36]  G. Bergametti,et al.  Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas , 1999 .

[37]  R. Rasmussen,et al.  Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model , 1998 .

[38]  Ina Tegen,et al.  Climate Response to Soil Dust Aerosols , 1998 .

[39]  G. Gutman,et al.  The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models , 1998 .

[40]  Sandy P. Harrison,et al.  Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments , 1999 .

[41]  J. Prospero Long‐term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality , 1999 .

[42]  Yaping Shao,et al.  A new model for dust emission by saltation bombardment , 1999 .

[43]  Long-term aerosol composition measurements and source apportionment at Rukomechi, Zimbabwe , 2000 .

[44]  C. Moulin,et al.  An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean , 2000 .

[45]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[46]  D. Westphal,et al.  Numerical Simulation of a Low-Level Jet over Complex Terrain in Southern Iran , 2000 .

[47]  Yann Callot,et al.  emissions: application to the Sahara desert , 2022 .

[48]  Zavisa Janjic,et al.  Comments on “Development and Evaluation of a Convection Scheme for Use in Climate Models” , 2000 .

[49]  W. Maenhaut,et al.  Aerosol composition at Jabiru, Australia, and impact of biomass burning , 2000 .

[50]  Y. Shao A model for mineral dust emission , 2001 .

[51]  Zaviša I. Janić Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model , 2001 .

[52]  Sandy P. Harrison,et al.  DIRTMAP: the geological record of dust , 2001 .

[53]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[54]  N. Middleton,et al.  Saharan dust storms: nature and consequences , 2001 .

[55]  Yoram J. Kaufman,et al.  Absorption of sunlight by dust as inferred from satellite and ground‐based remote sensing , 2001 .

[56]  Leiming Zhang,et al.  A size-segregated particle dry deposition scheme for an atmospheric aerosol module , 2001 .

[57]  G. Kallos,et al.  A model for prediction of desert dust cycle in the atmosphere , 2001 .

[58]  Slobodan Nickovic,et al.  An Alternative Approach to Nonhydrostatic Modeling , 2001 .

[59]  L. Gomes,et al.  Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas , 2001 .

[60]  J. Lelieveld,et al.  Saharan dust in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) - Cooperative LBA Regional Experiment (CLAIRE) in March 1998 , 2001 .

[61]  M. Heimann,et al.  Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study , 2002 .

[62]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[63]  Z. Janjic A nonhydrostatic model based on a new approach , 2002 .

[64]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[65]  Oleg Dubovik,et al.  Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust , 2002 .

[66]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[67]  R. Washington,et al.  Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations , 2003 .

[68]  P. Formenti,et al.  Climatological aspects of aerosol optical properties in Northern Greece , 2003 .

[69]  David J. Diner,et al.  Comparison of MISR and AERONET aerosol optical depths over desert sites , 2003 .

[70]  C. Zender,et al.  Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology , 2003 .

[71]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[72]  W. Maenhaut,et al.  Impact of Seasonal Biomass Burning on Air Quality in the 'Top End' of Regional Northern Australia , 2003 .

[73]  David Newman,et al.  Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses , 2003 .

[74]  Giorgio Fiocco,et al.  Direct radiative forcing of Saharan dust in the Mediterranean from measurements at Lampedusa Island and MISR space-borne observations , 2004 .

[75]  C. Zender,et al.  Quantifying mineral dust mass budgets:Terminology, constraints, and current estimates , 2004 .

[76]  R. Vautard,et al.  Aerosol modeling with CHIMERE—preliminary evaluation at the continental scale , 2004 .

[77]  N. Mahowald,et al.  Temporal variability of dust mobilization and concentration in source regions , 2004 .

[78]  G. Gobbi,et al.  Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001 , 2004 .

[79]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[80]  G. Myhre,et al.  Model simulations of dust sources and transport in the global atmosphere: Effects of soil erodibility and wind speed variability , 2005 .

[81]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[82]  B. Holben,et al.  Aerosol load characterization over South–East Italy for one year of AERONET sun-photometer measurements , 2005 .

[83]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[84]  C. Prigent,et al.  Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model , 2006 .

[85]  J. Baldasano,et al.  Interactive dust‐radiation modeling: A step to improve weather forecasts , 2006 .

[86]  Yoram J. Kaufman,et al.  Dust and pollution aerosols over the Negev desert, Israel: Properties, transport, and radiative effect , 2006 .

[87]  D. Koch,et al.  Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations , 2006 .

[88]  T. Eck,et al.  Classification of aerosol properties derived from AERONET direct sun data , 2006 .

[89]  V. Cachorro,et al.  A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling , 2006 .

[90]  F. Giorgi,et al.  Implementation and testing of a desert dust module in a regional climate model , 2006 .

[91]  G. Kallos,et al.  Transatlantic Saharan dust transport : Model simulation and results , 2006 .

[92]  Benoit Laurent,et al.  Modeling mineral dust emissions from Chinese and Mongolian deserts , 2006 .

[93]  Richard Washington,et al.  Dust and the low‐level circulation over the Bodélé Depression, Chad: Observations from BoDEx 2005 , 2006 .

[94]  A. Bais,et al.  Nine years of UV aerosol optical depth measurements at Thessaloniki, Greece , 2007 .

[95]  W. Maenhaut,et al.  The chemical composition of tropospheric aerosols and their contributing sources to a continental background site in northern Zimbabwe from 1994 to 2000 , 2007 .

[96]  G. Bergametti,et al.  Key Processes for Dust Emissions and their Modeling , 2007 .

[97]  Manfred Wendisch,et al.  On the direct and semidirect effects of Saharan dust over Europe: A modeling study , 2007 .

[98]  Z. Janjic,et al.  A unified atmospheric model suitable for studying transport of mineral aerosols from meso to global scales , 2009 .

[99]  D. Westphal,et al.  Operational aerosol and dust storm forecasting , 2009 .

[100]  Yaping Shao,et al.  Development of a physically based dust emission module within the Weather Research and Forecasting (WRF) model: Assessment of dust emission parameterizations and input parameters for source regions in Central and East Asia , 2009 .

[101]  J. Baldasano,et al.  Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations , 2009 .

[102]  B Laurent,et al.  Modelling mineral dust emissions , 2009 .

[103]  Adina Paytan,et al.  Atmospheric iron deposition: global distribution, variability, and human perturbations. , 2009, Annual review of marine science.

[104]  Further development of the unified multiscale Eulerian model for a broad range of spatial and temporal scales within the new National Environmental Modeling System , 2009 .

[105]  K. Schepanski,et al.  The global distribution of mineral dust , 2009 .

[106]  J. Heintzenberg The SAMUM-1 experiment over Southern Morocco: overview and introduction , 2009 .

[107]  Johannes W. Kaiser,et al.  Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System : Forward modeling , 2009 .

[108]  K. V. S. Badarinath,et al.  Long-range transport of dust aerosols over the Arabian Sea and Indian region — A case study using satellite data and ground-based measurements , 2010 .

[109]  Alexander Smirnov,et al.  Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network , 2010 .

[110]  A. Guenther,et al.  Branch-level measurement of total OH reactivity for constraining unknown BVOC emission during the CABINEX (Community Atmosphere-Biosphere INteractions Experiments)-09 Field Campaign , 2011 .

[111]  Ratko Vasic,et al.  A Class of Conservative Fourth-Order Advection Schemes and Impact of Enhanced Formal Accuracy on Extended-Range Forecasts , 2011 .

[112]  Michael Schulz,et al.  Global dust model intercomparison in AeroCom phase I , 2011 .