Internal temperature distribution in lithium-ion battery cell and module based on a 3D electrothermal model: An investigation of real geometry, entropy change and thermal process

[1]  T. Kousksou,et al.  Low-cost numerical lumped modelling of lithium-ion battery pack with phase change material and liquid cooling thermal management system , 2022, Journal of Energy Storage.

[2]  T. Vincent,et al.  In-situ temperature monitoring of a lithium-ion battery using an embedded thermocouple for smart battery applications , 2022, Journal of Energy Storage.

[3]  Pengjie Liu,et al.  Operando monitoring Lithium-ion battery temperature via implanted high-sensitive optical fiber sensors , 2022, Measurement.

[4]  Jianqi Zhang,et al.  In-situ monitoring of internal temperature and strain of solid-state battery based on optical fiber sensors , 2022, Sensors and Actuators A: Physical.

[5]  Hoseong Lee,et al.  Development of a hybrid battery thermal management system coupled with phase change material under fast charging conditions , 2022, Energy Conversion and Management.

[6]  M. Lacroix,et al.  Investigation of the P2D and of the modified single-particle models for predicting the nonlinear behavior of Li-ion batteries , 2022, Journal of Energy Storage.

[7]  Mesut Öztop,et al.  Control of temperature distribution for Li-ion battery modules via longitudinal fins , 2022, Journal of Energy Storage.

[8]  T. Vincent,et al.  Distributed internal thermal monitoring of lithium ion batteries with fibre sensors , 2022, Journal of Energy Storage.

[9]  Md Sazzad Hosen,et al.  Effects analysis on energy density optimization and thermal efficiency enhancement of the air-cooled Li-ion battery modules , 2022, Journal of Energy Storage.

[10]  Asanthi Jinasena ,et al.  Online Internal Temperature Sensors in Lithium-Ion Batteries: State-of-the-Art and Future Trends , 2022, Frontiers in Chemical Engineering.

[11]  J. Marco,et al.  Real-time monitoring of internal structural deformation and thermal events in lithium-ion cell via embedded distributed optical fibre , 2022, Journal of Power Sources.

[12]  P. K. Koorata,et al.  Numerical investigation of cooling performance of a novel air-cooled thermal management system for cylindrical Li-ion battery module , 2021, Applied Thermal Engineering.

[13]  Fei Zhou,et al.  Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery , 2021 .

[14]  H. Su,et al.  Electrochemical-distributed thermal coupled model-based state of charge estimation for cylindrical lithium-ion batteries , 2021 .

[15]  Hongwen He,et al.  Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement , 2021 .

[16]  Ming Jia,et al.  Simulation and parameter identification based on electrochemical- thermal coupling model of power lithium ion-battery , 2020 .

[17]  Shashi Paul,et al.  Rational design on materials for developing next generation lithium-ion secondary battery , 2020 .

[18]  W. D. Widanage,et al.  Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models , 2020, Journal of The Electrochemical Society.

[19]  Wei-li Song,et al.  A novel embedded method for in-situ measuring internal multi-point temperatures of lithium ion batteries , 2020 .

[20]  Arun Mambazhasseri Divakaran,et al.  Design, Development and Thermal Analysis of Reusable Li-Ion Battery Module for Future Mobile and Stationary Applications , 2020 .

[21]  C. Bibin,et al.  A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system , 2020 .

[22]  Christian Endisch,et al.  Thermal Modelling of a Prismatic Lithium-Ion Cell in a Battery Electric Vehicle Environment: Influences of the Experimental Validation Setup , 2019, Energies.

[23]  Christian Endisch,et al.  Modelling of 3D Temperature Behavior of Prismatic Lithium-Ion Cell With Focus on Experimental Validation Under Battery Electric Vehicle Conditions , 2019, 2019 25th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC).

[24]  P. Notten,et al.  A review on various temperature-indication methods for Li-ion batteries , 2019, Applied Energy.

[25]  Annette von Jouanne,et al.  Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements , 2019, Energies.

[26]  Kai Peter Birke,et al.  Effect of different cooling configurations on thermal gradients inside cylindrical battery cells , 2019, Journal of Energy Storage.

[27]  Wenzheng Li,et al.  Numerical study of a novel battery thermal management system for a prismatic Li-ion battery module , 2019, Energy Procedia.

[28]  Ravinder Kumar,et al.  Thermal performance of a novel confined flow Li-ion battery module , 2019, Applied Thermal Engineering.

[29]  João L. Pinto,et al.  Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries , 2019, Journal of Power Sources.

[30]  Fei Feng,et al.  A novel resistance‐based thermal model for lithium‐ion batteries , 2018, International Journal of Energy Research.

[31]  João L. Pinto,et al.  Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: A comparative study , 2017 .

[32]  Jiyun Zhao,et al.  Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review , 2017 .

[33]  S. Kjelstrup,et al.  Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles , 2017 .

[34]  L. Komsiyska,et al.  An experimentally validated method for temperature prediction during cyclic operation of a Li-ion cell , 2017 .

[35]  Thomas R. B. Grandjean,et al.  Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management , 2017 .

[36]  Azah Mohamed,et al.  Review of energy storage systems for electric vehicle applications: Issues and challenges , 2017 .

[37]  Zechang Sun,et al.  Battery Internal Temperature Estimation for LiFePO4 Battery Based on Impedance Phase Shift under Operating Conditions , 2017 .

[38]  D. Fang,et al.  Real-time monitoring of internal temperature evolution of the lithium-ion coin cell battery during the charge and discharge process , 2016 .

[39]  Yann Bultel,et al.  Fast-charging of lithium iron phosphate battery with ohmic-drop compensation method , 2016 .

[40]  Le Yi Wang,et al.  A Generalized SOC-OCV Model for Lithium-Ion Batteries and the SOC Estimation for LNMCO Battery , 2016 .

[41]  Maria Fátima Domingues,et al.  Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors , 2016, Sensors.

[42]  Kang Li,et al.  Real-time estimation of battery internal temperature based on a simplified thermoelectric model , 2016 .

[43]  B. Polzin,et al.  The Effect of Entropy and Enthalpy Changes on the Thermal Behavior of Li-Mn-Rich Layered Composite Cathode Materials , 2016 .

[44]  Pontus Svens,et al.  Thermal Management of Large-Format Prismatic Lithium-Ion Battery in PHEV Application , 2016 .

[45]  David A. Wetz,et al.  Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements , 2015 .

[46]  Guy Friedrich,et al.  Thermal modeling of large prismatic LiFePO4/graphite battery. Coupled thermal and heat generation models for characterization and simulation , 2015 .

[47]  Michael A. Danzer,et al.  Influence of Cell Design on Temperatures and Temperature Gradients in Lithium-Ion Cells: An In Operando Study , 2015 .

[48]  Chris Yuan,et al.  In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples , 2014 .

[49]  Jianbo Zhang,et al.  Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries , 2014 .

[50]  Woochul Kim,et al.  New device architecture of a thermoelectric energy conversion for recovering low-quality heat , 2014 .

[51]  J. Schmidt,et al.  Measurement of the internal cell temperature via impedance: Evaluation and application of a new method , 2013 .

[52]  Bin Wu,et al.  Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples , 2013 .

[53]  J. Christensen,et al.  An Efficient Parallelizable 3D Thermoelectrochemical Model of a Li-Ion Cell , 2013 .

[54]  Chi-Yuan Lee,et al.  In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors , 2011, Sensors.

[55]  B. Carkhuff,et al.  Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells , 2011 .

[56]  A Emadi,et al.  Batteries Need Electronics , 2011, IEEE Industrial Electronics Magazine.

[57]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[58]  Dinh Vinh Do,et al.  Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery , 2010 .

[59]  Ahmad Pesaran,et al.  Battery thermal models for hybrid vehicle simulations , 2002 .

[60]  A. Pesaran Battery Thermal Management in EVs and HEVs : Issues and Solutions , 2001 .

[61]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[62]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[63]  J. Newman,et al.  Theoretical Analysis of Current Distribution in Porous Electrodes , 1962 .