WAVELET SHRINKAGE FOR NONEQUISPACED SAMPLES
暂无分享,去创建一个
[1] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[2] I. Daubechies,et al. Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .
[3] D. L. Donoho,et al. Ideal spacial adaptation via wavelet shrinkage , 1994 .
[4] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[5] B. Turlach,et al. Interpolation methods for nonlinear wavelet regression with irregularly spaced design , 1997 .
[6] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[7] I. Ibragimov,et al. On Nonparametric Estimation of the Value of a Linear Functional in Gaussian White Noise , 1985 .
[8] Gilbert Strang,et al. Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..
[9] Wolfgang Härdle,et al. Applied Nonparametric Regression , 1991 .
[10] I. Johnstone,et al. Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .
[11] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[12] G. Casella,et al. Estimating a Bounded Normal Mean , 1981 .
[13] L. Brown,et al. A constrained risk inequality with applications to nonparametric functional estimation , 1996 .
[14] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[15] L. Brown,et al. Asymptotic equivalence of nonparametric regression and white noise , 1996 .
[17] I. Johnstone,et al. Neo-classical minimax problems, thresholding and adaptive function estimation , 1996 .