An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion.

[1]  Anjali Mandlik,et al.  Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells , 2007, Molecular microbiology.

[2]  Asis Das,et al.  Sortase-Catalyzed Assembly of Distinct Heteromeric Fimbriae in Actinomyces naeslundii , 2007, Journal of bacteriology.

[3]  J. Sillanpää,et al.  Endocarditis and biofilm-associated pili of Enterococcus faecalis. , 2006, The Journal of clinical investigation.

[4]  D. Zähner,et al.  Pili with strong attachments: Gram‐positive bacteria do it differently , 2006, Molecular Microbiology.

[5]  H. Ton-That,et al.  Type III Pilus of Corynebacteria: Pilus Length Is Determined by the Level of Its Major Pilin Subunit , 2006, Journal of Bacteriology.

[6]  I. Margarit,et al.  Identification of novel genomic islands coding for antigenic pilus‐like structures in Streptococcus agalactiae , 2006, Molecular microbiology.

[7]  Rino Rappuoli,et al.  Pili in Gram-positive pathogens , 2006, Nature Reviews Microbiology.

[8]  S. Guadagnini,et al.  Assembly and role of pili in group B streptococci , 2006, Molecular microbiology.

[9]  L. Marraffini,et al.  Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria , 2006, Microbiology and Molecular Biology Reviews.

[10]  P. Cossart,et al.  Bacterial Adhesion and Entry into Host Cells , 2006, Cell.

[11]  R. Rappuoli,et al.  A pneumococcal pilus influences virulence and host inflammatory responses. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  H. Ton-That,et al.  Assembly of Distinct Pilus Structures on the Surface of Corynebacterium diphtheriae , 2006, Journal of bacteriology.

[13]  S. Narayana,et al.  A ‘Collagen Hug’ Model for Staphylococcus aureus CNA binding to collagen , 2005, The EMBO journal.

[14]  G. Bensi,et al.  Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Naito,et al.  Curli Fibers Are Required for Development of Biofilm Architecture in Escherichia coli K‐12 and Enhance Bacterial Adherence to Human Uroepithelial Cells , 2005, Microbiology and immunology.

[16]  V. Nizet,et al.  Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy , 2004, Molecular microbiology.

[17]  L. Marraffini,et al.  Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae , 2004, Molecular microbiology.

[18]  O. Schneewind,et al.  Assembly of pili in Gram-positive bacteria. , 2004, Trends in microbiology.

[19]  R. Huber,et al.  Crystal structure of fervidolysin from Fervidobacterium pennivorans, a keratinolytic enzyme related to subtilisin. , 2004, Journal of molecular biology.

[20]  D. O'Connell Microbial adhesion: Dock, lock and latch , 2003, Nature Reviews Microbiology.

[21]  D. Shelver,et al.  MtaR, a Regulator of Methionine Transport, Is Critical for Survival of Group B Streptococcus In Vivo , 2003, Journal of bacteriology.

[22]  O. Schneewind,et al.  Assembly of pili on the surface of Corynebacterium diphtheriae , 2003, Molecular microbiology.

[23]  Magnus Hook,et al.  A “dock, lock, and latch” Structural Model for a Staphylococcal Adhesin Binding to Fibrinogen , 2003, Cell.

[24]  John A Tainer,et al.  Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. , 2003, Molecular cell.

[25]  M. Carson,et al.  A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen‐binding MSCRAMM, clumping factor A , 2002, The EMBO journal.

[26]  Ian T. Paulsen,et al.  Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Shenai,et al.  Infectious Diseases of the Fetus and Newborn Infant , 2001, Journal of Perinatology.

[28]  G. Waksman,et al.  Structural Basis of the Interaction of the Pyelonephritic E. coli Adhesin to Its Human Kidney Receptor , 2001, Cell.

[29]  D. Kasper,et al.  Functional Analysis in Type Ia Group B Streptococcusof a Cluster of Genes Involved in Extracellular Polysaccharide Production by Diverse Species of Streptococci* , 2001, The Journal of Biological Chemistry.

[30]  B. Spellerberg Pathogenesis of neonatal Streptococcusagalactiae infections , 2000 .

[31]  J. Pinkner,et al.  Type 1 pilus‐mediated bacterial invasion of bladder epithelial cells , 2000, The EMBO journal.

[32]  Ronald K. Taylor,et al.  Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae , 2000, Molecular microbiology.

[33]  F. X. Avilés,et al.  Crystal structure of avian carboxypeptidase D domain II: a prototype for the regulatory metallocarboxypeptidase subfamily , 1999, The EMBO journal.

[34]  J. Pflugrath,et al.  The finer things in X-ray diffraction data collection. , 1999, Acta crystallographica. Section D, Biological crystallography.

[35]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[36]  C. Baker,et al.  Group B streptococcal infections , 1999 .

[37]  S. Narayana,et al.  Domain structure of the Staphylococcus aureus collagen adhesin. , 1998, Biochemistry.

[38]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[39]  L. DeLucas,et al.  Structure of the collagen-binding domain from a Staphylococcus aureus adhesin , 1997, Nature Structural Biology.

[40]  P. Youngman,et al.  New genetic techniques for group B streptococci: high-efficiency transformation, maintenance of temperature-sensitive pWV01 plasmids, and mutagenesis with Tn917 , 1997, Applied and environmental microbiology.

[41]  P. Lydyard,et al.  Characterization of the pilF—pilD pilus‐assembly locus of Neisseria gonorrhoeae , 1995, Molecular microbiology.

[42]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[43]  V. Fischetti,et al.  Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram‐positive cocci , 1990, Molecular microbiology.

[44]  S. Normark,et al.  Fibronectin binding mediated by a novel class of surface organelles on Escherichia coll , 1989, Nature.

[45]  J. Klein,et al.  Infectious Diseases of the Fetus and Newborn Infant , 1983 .

[46]  Michael Lappe,et al.  A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3 , 2001, Nucleic Acids Res..

[47]  M. Carson,et al.  Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. , 2000, Structure.

[48]  B. Spellerberg Pathogenesis of neonatal Streptococcus agalactiae infections. , 2000, Microbes and infection.

[49]  M. Höök,et al.  MSCRAMM-mediated adherence of microorganisms to host tissues. , 1994, Annual review of microbiology.