Where we stand, where we are moving: Surveying computational techniques for identifying miRNA genes and uncovering their regulatory role

Traditional biology was forced to restate some of its principles when the microRNA (miRNA) genes and their regulatory role were firstly discovered. Typically, miRNAs are small non-coding RNA molecules which have the ability to bind to the 3'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. Existing experimental techniques for their identification and the prediction of the target genes share some important limitations such as low coverage, time consuming experiments and high cost reagents. Hence, many computational methods have been proposed for these tasks to overcome these limitations. Recently, many researchers emphasized on the development of computational approaches to predict the participation of miRNA genes in regulatory networks and to analyze their transcription mechanisms. All these approaches have certain advantages and disadvantages which are going to be described in the present survey. Our work is differentiated from existing review papers by updating the methodologies list and emphasizing on the computational issues that arise from the miRNA data analysis. Furthermore, in the present survey, the various miRNA data analysis steps are treated as an integrated procedure whose aims and scope is to uncover the regulatory role and mechanisms of the miRNA genes. This integrated view of the miRNA data analysis steps may be extremely useful for all researchers even if they work on just a single step.

[1]  Geoffrey I. Webb,et al.  MultiBoosting: A Technique for Combining Boosting and Wagging , 2000, Machine Learning.

[2]  Nello Cristianini,et al.  The Application of Support Vector Machines to Medical decision Support: A Case Study , 1999 .

[3]  Weixiong Zhang,et al.  Characterization and Identification of MicroRNA Core Promoters in Four Model Species , 2007, PLoS Comput. Biol..

[4]  N. Rajewsky,et al.  Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.

[5]  Boqin Qiang,et al.  Improving the prediction of human microRNA target genes by using ensemble algorithm , 2007, FEBS letters.

[6]  Sanghamitra Bandyopadhyay,et al.  TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples , 2009, Bioinform..

[7]  Bin Fan,et al.  MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans , 2007, BMC Bioinformatics.

[8]  A. T. Freitas,et al.  Current tools for the identification of miRNA genes and their targets , 2009, Nucleic acids research.

[9]  Ana M. Aransay,et al.  miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments , 2009, Nucleic Acids Res..

[10]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[11]  Zheng Fang,et al.  Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure , 2011, BMC Bioinformatics.

[12]  G. Church,et al.  Computational and experimental identification of C. elegans microRNAs. , 2003, Molecular cell.

[13]  Byoung-Tak Zhang,et al.  Human microRNA prediction through a probabilistic co-learning model of sequence and structure , 2005, Nucleic acids research.

[14]  Martin Reczko,et al.  Accurate microRNA Target Prediction Using Detailed Binding Site Accessibility and Machine Learning on Proteomics Data , 2011, Front. Gene..

[15]  Alessandra Carbone,et al.  MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data , 2010, Bioinform..

[16]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[17]  Louise C. Showe,et al.  Bioinformatics Original Paper Combining Multi-species Genomic Data for Microrna Identification Using a Naı¨ve Bayes Classifier , 2022 .

[18]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[19]  Norbert Gretz,et al.  miRWalk - Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes , 2011, J. Biomed. Informatics.

[20]  Byoung-Tak Zhang,et al.  miTarget: microRNA target gene prediction using a support vector machine , 2006, BMC Bioinformatics.

[21]  Malik Yousef,et al.  A study of microRNAs in silico and in vivo: bioinformatics approaches to microRNA discovery and target identification , 2009, The FEBS journal.

[22]  Mihaela Zavolan,et al.  Reproductive toxicology. Trichloroethylene. , 1997, BMC Bioinformatics.

[23]  Tzong-Yi Lee,et al.  Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data , 2011, Nucleic acids research.

[24]  Achuthsankar S. Nair,et al.  MTar: a computational microRNA target prediction architecture for human transcriptome , 2010, BMC Bioinformatics.

[25]  Yen-Jen Oyang,et al.  Predicting microRNA precursors with a generalized Gaussian components based density estimation algorithm , 2010, BMC Bioinformatics.

[26]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[27]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[28]  Chris Sander,et al.  The developmental miRNA profiles of zebrafish as determined by small RNA cloning. , 2005, Genes & development.

[29]  Santosh K. Mishra,et al.  De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures , 2007, Bioinform..

[30]  B. Frey,et al.  Using expression profiling data to identify human microRNA targets , 2007, Nature Methods.

[31]  A. Ballabio,et al.  MicroRNA target prediction by expression analysis of host genes. , 2009, Genome research.

[32]  S. Cohen,et al.  MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. , 2010, Genes & development.

[33]  Wenbin Li,et al.  PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs , 2011, Bioinform..

[34]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[35]  Sebastian D. Mackowiak,et al.  miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades , 2011, Nucleic acids research.

[36]  Athanasios K. Tsakalidis,et al.  Predicting Human miRNA Target Genes Using a Novel Evolutionary Methodology , 2012, SETN.

[37]  Donald E. Knuth,et al.  backus normal form vs. Backus Naur form , 1964, CACM.

[38]  Molly Megraw,et al.  MicroRNA promoter analysis. , 2010, Methods in molecular biology.

[39]  Li Li,et al.  Computational approaches for microRNA studies: a review , 2010, Mammalian Genome.

[40]  Eric C Lai,et al.  microRNAs: Runts of the Genome Assert Themselves , 2003, Current Biology.

[41]  Megan F. Cole,et al.  Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells , 2008, Cell.

[42]  Christoph Rodak,et al.  MirZ: an integrated microRNA expression atlas and target prediction resource , 2009, Nucleic Acids Res..

[43]  Wei Niu,et al.  Construction and Analysis of an Integrated Regulatory Network Derived from High-Throughput Sequencing Data , 2011, PLoS Comput. Biol..

[44]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[45]  Byoung-Tak Zhang,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm045 Data and text mining Discovery of microRNA–mRNA modules via population-based probabilistic learning , 2007 .

[46]  Peter F. Stadler,et al.  Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data , 2006, ISMB.

[47]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[48]  Anton J. Enright,et al.  Detecting microRNA binding and siRNA off-target effects from expression data , 2008, Nature Methods.

[49]  Dmitrij Frishman,et al.  TargetSpy: a supervised machine learning approach for microRNA target prediction , 2010, BMC Bioinformatics.

[50]  Vasile Palade,et al.  microPred: effective classification of pre-miRNAs for human miRNA gene prediction , 2009, Bioinform..

[51]  Panayiotis V. Benos,et al.  HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models , 2009, BMC Bioinformatics.

[52]  Sanghamitra Bandyopadhyay,et al.  MultiMiTar: A Novel Multi Objective Optimization based miRNA-Target Prediction Method , 2011, PloS one.

[53]  Molly Megraw,et al.  Support Vector Machines for Predicting microRNA Hairpins , 2006, BIOCOMP.

[54]  Isidore Rigoutsos,et al.  Interactive exploration of RNA22 microRNA target predictions , 2012, Bioinform..

[55]  Xiaowei Wang,et al.  Sequence analysis Prediction of both conserved and nonconserved microRNA targets in animals , 2007 .

[56]  Anton J. Enright,et al.  Prediction of microRNA targets. , 2007, Drug discovery today.

[57]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[58]  Martti T. Tammi,et al.  MicroTar: predicting microRNA targets from RNA duplexes , 2006, BMC Bioinformatics.

[59]  Daniel H. Huson,et al.  Identification of plant microRNA homologs , 2006, Bioinform..

[60]  Bo Wei,et al.  MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences , 2011, BMC Bioinformatics.

[61]  D. Corcoran,et al.  Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data , 2009, PloS one.

[62]  IT Informatics,et al.  Backus-Naur Form , 2010 .

[63]  Athanasios K. Tsakalidis,et al.  A novel pre-miRNA classification approach for the prediction of microRNA genes , 2010, Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine.

[64]  Niall Barron,et al.  Target Prediction Algorithms and Bioinformatics Resources for miRNA Studies , 2012 .

[65]  Ashwin Srinivasan,et al.  Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM) , 2010, BMC Bioinformatics.

[66]  Chi-Ching Lee,et al.  DSAP: deep-sequencing small RNA analysis pipeline , 2010, Nucleic Acids Res..

[67]  Darby Tien-Hao Chang,et al.  Using a kernel density estimation based classifier to predict species-specific microRNA precursors , 2008, BMC Bioinformatics.

[68]  Min Han,et al.  mirWIP: microRNA Target Prediction Based on miRNP Enriched Transcripts , 2011 .

[69]  Lei Li,et al.  miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants , 2011, Bioinform..

[70]  Dang D. Long,et al.  mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts , 2008, Nature Methods.

[71]  G. J. Hannon,et al.  Analysis of Large-Scale Sequencing of Small RNAs , 2007, Pacific Symposium on Biocomputing.

[72]  Takaya Saito,et al.  MicroRNAs--targeting and target prediction. , 2010, New biotechnology.

[73]  Todd A. Anderson,et al.  Computational identification of microRNAs and their targets , 2006, Comput. Biol. Chem..

[74]  Louise C. Showe,et al.  Naïve Bayes for microRNA target predictions - machine learning for microRNA targets , 2007, Bioinform..

[75]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[76]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[77]  Stergios Papadimitriou,et al.  Efficient and interpretable fuzzy classifiers from data with support vector learning , 2005, Intell. Data Anal..

[78]  Hyeyoung Min,et al.  Got target?: computational methods for microRNA target prediction and their extension , 2010, Experimental & Molecular Medicine.

[79]  Ola Snøve,et al.  Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. , 2005, RNA.

[80]  Fei Li,et al.  MicroRNA identification based on sequence and structure alignment , 2005, Bioinform..

[81]  Xiaowei Wang,et al.  Systematic identification of microRNA functions by combining target prediction and expression profiling , 2006, Nucleic acids research.

[82]  Fei Li,et al.  Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine , 2005, BMC Bioinformatics.

[83]  Edwin Cuppen,et al.  Diversity of microRNAs in human and chimpanzee brain , 2006, Nature Genetics.

[84]  Yu Xue,et al.  Prediction of novel pre-microRNAs with high accuracy through boosting and SVM , 2011, Bioinform..

[85]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[86]  B. Cullen Viruses and microRNAs , 2006, Nature Genetics.

[87]  S. Diederichs,et al.  Gutschner T , Diederichs S . The hallmarks of cancer : a long non-coding RNA point of view . RNA Biol 9 : 703-719 , 2012 .

[88]  Tsakalidis Athanasios,et al.  Predicting human miRNA target genes using a novel evolutionary methodology , 2012 .

[89]  A. Adai,et al.  Computational prediction of miRNAs in Arabidopsis thaliana. , 2005, Genome research.

[90]  Ming Chen,et al.  Toward microRNA-mediated gene regulatory networks in plants , 2011, Briefings Bioinform..

[91]  Jan Gorodkin,et al.  Principles and limitations of computational microRNA gene and target finding. , 2007, DNA and cell biology.

[92]  Weixiong Zhang,et al.  MicroRNA prediction with a novel ranking algorithm based on random walks , 2008, ISMB.

[93]  Alvis Brazma,et al.  Current approaches to gene regulatory network modelling , 2007, BMC Bioinformatics.

[94]  Mihaela Zavolan,et al.  Identification of Clustered Micrornas Using an Ab Initio Prediction Method , 2022 .