Codes and Projective Multisets

The paper gives a matrix-free presentation of the correspondence between full-length linear codes and projective multisets. It generalizes the Brouwer-Van Eupen construction that transforms projective codes into two-weight codes. Short proofs of known theorems are obtained. A new notion of self-duality in coding theory is explored.

[1]  Vladimir D. Tonchev,et al.  The uniformly packed binary [27, 21, 3] and [35, 29, 3] codes , 1996, Discret. Math..

[2]  R. Chien,et al.  Error-Correcting Codes, Second Edition , 1973, IEEE Transactions on Communications.

[3]  Tom Verhoeff,et al.  An updated table of minimum-distance bounds for binary linear codes , 1987, IEEE Trans. Inf. Theory.

[4]  D. Slepian A class of binary signaling alphabets , 1956 .

[5]  J. Hirschfeld,et al.  The packing problem in statistics, coding theory and finite projective spaces , 1998 .

[6]  Howard E. Sachar,et al.  The Fp span of the incidence matrix of a finite projective plane , 1979 .

[7]  Andries E. Brouwer,et al.  Some new two-weight codes and strongly regular graphs , 1985, Discret. Appl. Math..

[8]  Noboru Hamada,et al.  A characterization of some [n, k, d;q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry , 1993, Discret. Math..

[9]  Andries E. Brouwer,et al.  The Correspondence Between Projective Codes and 2-weight Codes , 1997, Des. Codes Cryptogr..

[10]  Ivan N. Landjev Linear codes over finite fields and finite projective geometries , 2000, Discret. Math..

[11]  Mary C. Brennan,et al.  on the , 1982 .

[12]  A. Bonisoli Every equidistant linear code is a sequence of dual Hamming codes , 1984 .

[13]  R. Calderbank,et al.  The Geometry of Two‐Weight Codes , 1986 .

[14]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[15]  Vladimir D. Tonchev,et al.  Exponential number of quasi-symmetric SDP designs and codes meeting the Grey-Rankin bound , 1991, Des. Codes Cryptogr..

[16]  Tor Helleseth,et al.  On the [162, 8, 80] codes , 1997, IEEE Trans. Inf. Theory.

[17]  David B. Jaffe Binary Linear Codes: New Results on Nonexistence , 1996 .

[18]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[19]  Raymond Hill,et al.  Caps and codes , 1978, Discret. Math..

[20]  M. Shrikhande,et al.  Quasi-Symmetric Designs , 1991 .

[21]  Harold N. Ward,et al.  Divisible codes , 1981 .

[22]  S. G. Vladut,et al.  Algebraic-Geometric Codes , 1991 .

[23]  Noboru Hamada,et al.  On a Geometrical Method of Construction of Maximal t-Linearly Independent Sets , 1978, J. Comb. Theory A.

[24]  Sylvia B. Encheva,et al.  On the [28, 7, 12] binary self-complementary codes and their residuals , 1994, Des. Codes Cryptogr..

[25]  David B. Jaffe,et al.  New binary linear codes which are dual transforms of good codes , 1999, IEEE Trans. Inf. Theory.

[26]  Fumikazu Tamari On linear codes which attain the Solomon-Stiffler bound , 1984, Discret. Math..

[27]  J. Macwilliams A theorem on the distribution of weights in a systematic code , 1963 .

[28]  Christopher Jones,et al.  Optimal linear codes. , 1999 .

[29]  V. Tonchev Quasi-symmetric designs, codes, quadrics, and hyperplane sections , 1993 .

[30]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[31]  Nikolai L. Manev,et al.  An improvement of the Griesmer bound for some small minimum distances , 1985, Discret. Appl. Math..