A new model-dependent time integration scheme with effective numerical damping for dynamic analysis

[1]  K. Bathe,et al.  The Bathe time integration method with controllable spectral radius: The ρ∞-Bathe method , 2019, Computers & Structures.

[2]  Klaus-Jürgen Bathe,et al.  Further insights into an implicit time integration scheme for structural dynamics , 2018, Computers & Structures.

[3]  Shuenn-Yih Chang,et al.  An unusual amplitude growth property and its remedy for structure-dependent integration methods , 2018 .

[4]  Ce Huang,et al.  A composite collocation method with low-period elongation for structural dynamics problems , 2018 .

[5]  S. Shojaee,et al.  Development of a direct time integration method based on Bezier curve and 5th-order Bernstein basis function , 2018 .

[6]  Wulf G. Dettmer,et al.  On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems , 2017 .

[7]  Amir Hossein Namadchi,et al.  Semiexplicit Unconditionally Stable Time Integration for Dynamic Analysis Based on Composite Scheme , 2017 .

[8]  D. Fang,et al.  A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis , 2017 .

[9]  Amir Hossein Namadchi,et al.  Dynamic relaxation method based on Lanczos algorithm , 2017 .

[10]  Daining Fang,et al.  A novel sub-step composite implicit time integration scheme for structural dynamics , 2017 .

[11]  Donghuan Liu,et al.  Accuracy of a composite implicit time integration scheme for structural dynamics , 2017 .

[12]  Amir Hossein Namadchi,et al.  Explicit dynamic analysis using Dynamic Relaxation method , 2016 .

[13]  James M. Ricles,et al.  Assessment of explicit and semi‐explicit classes of model‐based algorithms for direct integration in structural dynamics , 2016 .

[14]  Xiao Liang,et al.  Direct Integration Algorithms for Efficient Nonlinear Seismic Response of Reinforced Concrete Highway Bridges , 2016 .

[15]  S. Shojaee,et al.  An unconditionally stable implicit time integration algorithm , 2015 .

[16]  Shuenn‐Yih Chang,et al.  Dissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problems , 2015 .

[17]  Shuenn-Yih Chang,et al.  A family of noniterative integration methods with desired numerical dissipation , 2014 .

[18]  J. Ricles,et al.  Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation , 2014 .

[19]  K. Bathe,et al.  Performance of an implicit time integration scheme in the analysis of wave propagations , 2013 .

[20]  Qingbin Li,et al.  An efficient backward Euler time-integration method for nonlinear dynamic analysis of structures , 2012 .

[21]  K. Bathe,et al.  Insight into an implicit time integration scheme for structural dynamics , 2012 .

[22]  Ali Kaveh,et al.  Efficient buckling and free vibration analysis of cyclically repeated space truss structures , 2010 .

[23]  Shuenn-Yih Chang,et al.  A new family of explicit methods for linear structural dynamics , 2010 .

[24]  J. Ricles,et al.  Development of Direct Integration Algorithms for Structural Dynamics Using Discrete Control Theory , 2008 .

[25]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .

[26]  K. Bathe,et al.  On a composite implicit time integration procedure for nonlinear dynamics , 2005 .

[27]  Shuenn-Yih Chang,et al.  Explicit Pseudodynamic Algorithm with Unconditional Stability , 2002 .

[28]  M. A. Crisfield,et al.  Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .

[29]  K. Bathe Finite Element Procedures , 1995 .

[30]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[31]  M. Dokainish,et al.  A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods , 1989 .

[32]  T. J.R. Hughes,et al.  ANALYSIS OF TRANSIENT ALGORITHMS WITH PARTICULAR REFERENCE TO STABILITY BEHAVIOR. , 1983 .

[33]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[34]  E. Hinton,et al.  Finite element analysis of geometrically nonlinear plate behaviour using a mindlin formulation , 1980 .

[35]  Klaus-Jürgen Bathe,et al.  A geometric and material nonlinear plate and shell element , 1980 .

[36]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[37]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[38]  G. L. Goudreau,et al.  Evaluation of numerical integration methods in elastodynamics , 1973 .

[39]  K. Bathe,et al.  Stability and accuracy analysis of direct integration methods , 1972 .