Discriminatory optical force for chiral molecules

We suggest that the force F exerted upon a chiral molecule by light assumes the form under appropriate circumstances, where a and b pertain to the molecule whilst w and h are the local densities of electric energy and helicity in the optical field; the gradients of these quantities thus governing the molecule's centre-of-mass motion. Whereas a is identical for the mirror-image forms or enantiomers of the molecule, b has opposite signs; the associated contribution to F therefore pointing in opposite directions. A simple optical field is presented for which vanishes but does not, so that F is absolutely discriminatory. We then present two potential applications: a Stern–Gerlach-type deflector capable of spatially separating the enantiomers of a chiral molecule and a diffraction grating to which chiral molecules alone are sensitive; the resulting diffraction patterns thus encoding information about their chiral geometry.

[1]  S. Gerlich,et al.  A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules , 2007, 0802.3287.

[2]  Hald,et al.  Three dimensional alignment of molecules using elliptically polarized laser fields , 2000, Physical review letters.

[3]  E. Hendry,et al.  Chiral Electromagnetic Fields Generated by Arrays of Nanoslits , 2012, Nano letters.

[4]  Mirta Rodríguez,et al.  Molecular Optics: Controlling the dipole force , 2009 .

[5]  S. Gerlich,et al.  Optical polarizabilities of large molecules measured in near-field interferometry , 2007, 0708.3320.

[6]  Yiqiao Tang,et al.  Optical chirality and its interaction with matter. , 2010, Physical review letters.

[7]  S. Mason Molecular Optical Activity and the Chiral Discriminations , 1982 .

[8]  A. Bishop,et al.  Optical Stark deceleration of nitric oxide and benzene molecules using optical lattices , 2006 .

[9]  Chen Ning Yang,et al.  Question of Parity Conservation in Weak Interactions , 1956 .

[10]  P. Barker,et al.  Super-Gaussian mirror for high-field-seeking molecules , 2005 .

[11]  Stephen M. Barnett,et al.  Optical helicity, optical spin and related quantities in electromagnetic theory , 2012 .

[12]  A. Zeilinger,et al.  Diffraction of complex molecules by structures made of light. , 2001, Physical review letters.

[13]  T. Thirunamachandran,et al.  Molecular Quantum Electrodynamics , 1984 .

[14]  Matt M. Coles,et al.  Photonic measures of helicity: optical vortices and circularly polarized reflection. , 2013, Optics letters.

[15]  J. Louderback,et al.  Absolute measurement of the optical polarizability of C60 , 2000 .

[16]  Franco Nori,et al.  Characterizing optical chirality , 2010, 1012.4176.

[17]  L. Barron True and false chirality and parity violation , 1986 .

[18]  K. Hornberger,et al.  Quantum interferometry with complex molecules , 2009, 0903.1614.

[19]  Robert P. Cameron,et al.  On the ‘second potential’ in electrodynamics , 2013 .

[20]  L. Barron From cosmic chirality to protein structure: Lord Kelvin's legacy. , 2012, Chirality.

[21]  M. Shapiro,et al.  Spatial separation of dimers of chiral molecules. , 2013, Physical review letters.

[22]  H. Bateman,et al.  The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell's Equations , 2015 .

[23]  J. Kirkwood,et al.  THE THEORETICAL OPTICAL ROTATION OF PHENANTHRO[3,4-c]PHENANTHRENE , 1955 .

[24]  Ebrahim Karimi,et al.  Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications , 2011 .

[25]  Harald Giessen,et al.  Tailoring enhanced optical chirality : design principles for chiral plasmonic nanostructures , 2012 .

[26]  M. G. Calkin,et al.  An Invariance Property of the Free Electromagnetic Field , 1965 .

[27]  P. Corkum,et al.  Deflection of Neutral Molecules using the Nonresonant Dipole Force , 1997 .

[28]  M. Shapiro,et al.  Theory of the optical spatial separation of racemic mixtures of chiral molecules. , 2010, The Journal of chemical physics.

[29]  L. Barron Theoretical optical rotation of oriented hexahelicene , 1975 .

[30]  M. Shapiro,et al.  Communications: Spatial separation of enantiomers by coherent optical means. , 2010, The Journal of chemical physics.

[31]  P. Barker,et al.  Slowing molecules by optical microlinear deceleration , 2002 .

[32]  B. Spivak,et al.  Photoinduced separation of chiral isomers in a classical buffer gas. , 2008, Physical review letters.

[33]  A. Major,et al.  Slow beams of massive molecules , 2007, 0708.1449.

[34]  P. Corkum,et al.  OPTICAL DEFLECTION OF MOLECULES , 1998 .

[35]  D. Lednicer,et al.  The Synthesis and Resolution of Hexahelicene1 , 1956 .

[36]  Oliver Heaviside XI. On the forces, stresses, and fluxes of energy in the electromagnetic field , 1892 .

[37]  Keith Bonin,et al.  Electric-Dipole Polarizabilities Of Atoms, Molecules, And Clusters , 1997 .

[38]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[39]  R. Bentley Chiral: a confusing etymology. , 2010, Chirality.

[40]  P. Barker,et al.  Decelerating and bunching molecules with pulsed traveling optical lattices (10 pages) , 2004 .

[41]  W. Bonner,et al.  Chirality and life , 1995, Origins of Life and Evolution of the Biosphere.

[42]  Stephen M. Barnett,et al.  Electric–magnetic symmetry and Noether's theorem , 2012 .

[43]  A comparison of ab initio optical rotations obtained with static and dynamic methods , 1998 .

[44]  D. D. Hoppes,et al.  Experimental Test of Parity Conservation in Beta Decay , 1957 .

[45]  Thomas W. Ebbesen,et al.  Mechanical separation of chiral dipoles by chiral light , 2013, 1306.3708.

[46]  D. Patterson,et al.  Enantiomer-specific detection of chiral molecules via microwave spectroscopy , 2013, Nature.

[47]  Sang‐Hee Shim,et al.  Molecular lens applied to benzene and carbon disulfide molecular beams , 2001 .

[48]  A. Bishop,et al.  Controlling the motion of cold molecules with deep periodic optical potentials , 2006 .

[49]  Friedrich,et al.  Alignment and trapping of molecules in intense laser fields. , 1995, Physical review letters.

[50]  S. Barnett,et al.  The enigma of optical momentum in a medium , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  B. Friedrich Slowing of supersonically cooled atoms and molecules by time-varying nonresonant induced dipole forces , 2000 .

[52]  T. Seideman MANIPULATING EXTERNAL DEGREES OF FREEDOM WITH INTENSE LIGHT : LASER FOCUSING AND TRAPPING OF MOLECULES , 1997 .

[53]  E. Hendry,et al.  Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures , 2013 .

[54]  A. Cohen,et al.  Local geometry of electromagnetic fields and its role in molecular multipole transitions. , 2010, The journal of physical chemistry. B.

[55]  S. Barnett,et al.  Resolution of the abraham-minkowski dilemma. , 2010, Physical review letters.

[56]  Oliver Heaviside,et al.  V. On the forces, stresses, and fluxes of energy in the electromagnetic field , 1892, Proceedings of the Royal Society of London.

[57]  T. Seideman,et al.  Two-dimensional scattering of slow molecules by laser beams , 1998 .

[58]  Daniel M. Lipkin,et al.  Existence of a New Conservation Law in Electromagnetic Theory , 1964 .

[59]  S. Barnett,et al.  On the electromagnetic force on a dielectric medium , 2006 .

[60]  S. Barnett,et al.  Optical helicity of interfering waves , 2013, 1308.1308.

[61]  K. Rao,et al.  Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s) , 2005 .

[62]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .

[63]  David L. Andrews,et al.  Chirality and angular momentum in optical radiation , 2012 .

[64]  Yiqiao Tang,et al.  Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light , 2011, Science.

[65]  A. Bishop,et al.  Creating cold stationary molecular gases by optical Stark deceleration , 2010 .

[66]  S. Barnett,et al.  Angular momentum of multimode and polarization patterns. , 2007, Optics express.

[67]  D. Lednicer,et al.  A NEW REAGENT FOR RESOLUTION BY COMPLEX FORMATION; THE RESOLUTION OF PHENANTHRO-[3,4-c]PHENANTHRENE1 , 1955 .

[68]  Matt M. Coles,et al.  Measures of chirality and angular momentum in the electromagnetic field. , 2012, Optics letters.

[69]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[70]  Laurence D. Barron,et al.  True and false chirality and absolute asymmetric synthesis , 1986 .

[71]  D. Candlin Analysis of the new conservation law in electromagnetic theory , 1965 .

[72]  D. Kondepudi,et al.  Chiral asymmetry in spiral galaxies? , 2001, Chirality.

[73]  A. Cronin,et al.  Coherent manipulation of atoms with standing light waves , 2001 .

[74]  E. Hendry,et al.  Ultrasensitive detection and characterization of biomolecules using superchiral fields. , 2010, Nature nanotechnology.

[75]  Franco Nori,et al.  Dual electromagnetism: helicity, spin, momentum and angular momentum , 2012, 1208.4523.

[76]  Yong Li,et al.  Generalized Stern-Gerlach effect for chiral molecules. , 2007, Physical review letters.

[77]  L. Nafie Physical chemistry: Handedness detected by microwaves , 2013, Nature.

[78]  Stephen M. Barnett,et al.  Duplex symmetry and its relation to the conservation of optical helicity , 2012 .

[79]  Dudley R. Herschbach,et al.  Polarization of Molecules Induced by Intense Nonresonant Laser Fields , 1995 .

[80]  C. cohen-tannoudji,et al.  Photons and Atoms: Introduction to Quantum Electrodynamics , 1989 .

[81]  Carmelo Rosales-Guzmán,et al.  Light with enhanced optical chirality. , 2012, Optics letters.

[82]  L. Barron From cosmic chirality to protein structure and function: Lord Kelvin's legacy. , 1997, QJM : monthly journal of the Association of Physicians.

[83]  M. Kowarz Conservation Laws for Free Electromagnetic Fields , 1995 .

[84]  P. Barker,et al.  Spectra of molecular gases trapped in deep optical lattices , 2008 .

[85]  T. Seideman Shaping molecular beams with intense light , 1997 .

[86]  Cho,et al.  Molecular lens of the nonresonant dipole force , 2000, Physical review letters.

[87]  J. Larmor A Dynamical Theory of the Electric and Luminiferous Medium. [Abstract] , 1893 .

[88]  L. Barron,et al.  Molecular light scattering and optical activity. Cambridge University Press 1983, xv + 408pp., £37.50 , 1983 .

[89]  L. Barron Cosmic chirality both true and false. , 2012, Chirality.

[90]  Joseph S. Choi,et al.  Limitations of a superchiral field , 2012 .

[91]  Gabriella Cipparrone,et al.  Polarization gradient: exploring an original route for optical trapping and manipulation. , 2010, Optics express.

[92]  T. Seideman,et al.  Photomanipulation of external molecular modes: A time-dependent self-consistent-field approach , 1999 .

[93]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[94]  A. Bishop,et al.  Optical stark decelerator for molecules. , 2004, Physical review letters.

[95]  T. Seideman Molecular optics in an intense laser field: A route to nanoscale material design , 1997 .

[96]  T. Thirunamachandran,et al.  Molecular quantum electrodynamics : an introduction to radiation-molecule interactions , 1998 .

[97]  S. Barnett,et al.  Momentum Exchange between Light and a Single Atom: Abraham or Minkowski? , 2008, Physical review letters.

[98]  T. Seideman,et al.  Nanolithography using molecular optics , 2003 .

[99]  S. Gerlich,et al.  Matter-wave metrology as a complementary tool for mass spectrometry. , 2008, Angewandte Chemie.

[100]  H. Chung,et al.  Separation of a benzene and nitric oxide mixture by a molecule prism , 2003 .

[101]  T. Seideman New means of spatially manipulating molecules with light , 1999 .

[102]  Kasper Hald,et al.  Controlling the alignment of neutral molecules by a strong laser field , 1999 .