Towards 1ULP evaluation of Daubechies Wavelets

We present algorithms to numerically evaluate Daubechies wavelets and scaling functions to high relative accuracy. These algorithms refine the suggestion of Daubechies and Lagarias to evaluate functions defined by two-scale difference equations using splines; carefully choosing amongst a family of rapidly convergent interpolators which effectively capture all the smoothness present in the function and whose error term admits a small asymptotic constant. We are also able to efficiently compute derivatives, though with a smoothness-induced reduction in accuracy. An implementation is provided in the Boost Software Library.

[1]  J. Oliver,et al.  An Error Analysis of the Modified Clenshaw Method for Evaluating Chebyshev and Fourier Series , 1977 .

[2]  Rolf Dieter Grigorieff On Cardinal Spline Interpolation , 2013, Comput. Methods Appl. Math..

[3]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[4]  Aaron O'Leary,et al.  PyWavelets: A Python package for wavelet analysis , 2019, J. Open Source Softw..

[5]  Wenbin Lin,et al.  Direct algorithm for computation of derivatives of the Daubechies basis functions , 2005, Applied Mathematics and Computation.

[6]  Kwan-Liu Ma,et al.  VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures , 2016, IEEE Computer Graphics and Applications.

[7]  Stefan Goedecker,et al.  An efficient numerical quadrature for the calculation of the potential energy of wavefunctions expressed in the Daubechies wavelet basis , 2006, J. Comput. Phys..

[8]  Mark R. Dennis,et al.  The Princeton companion to applied mathematics , 2015 .

[9]  S. Mallat A wavelet tour of signal processing , 1998 .

[10]  Kai Hormann,et al.  Barycentric rational interpolation with no poles and high rates of approximation , 2007, Numerische Mathematik.

[11]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[12]  B. Wendroff Theoretical Numerical Analysis , 1966 .

[13]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[14]  Computing derivatives of scaling functions and wavelets , 1998, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380).

[15]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[16]  I. Daubechies,et al.  Two-scale difference equations I: existence and global regularity of solutions , 1991 .

[17]  Stefan Goedecker,et al.  Daubechies wavelets for linear scaling density functional theory. , 2014, The Journal of chemical physics.

[18]  J. R. Higgins,et al.  Five short stories about the cardinal series , 1985 .

[19]  William H. Press,et al.  Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .

[20]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[21]  Scott T. Rickard,et al.  Comparing Measures of Sparsity , 2008, IEEE Transactions on Information Theory.

[22]  Gilbert Strang,et al.  Eigenvalues of (↓2)H and convergence of the cascade algorithm , 1996, IEEE Trans. Signal Process..

[23]  Bruce W. Char,et al.  Maple V Library Reference Manual , 1992, Springer New York.

[24]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[25]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[26]  Helmut Alt,et al.  Comparison of arithmetic functions with respect to boolean circuit depth , 1984, STOC '84.

[27]  Fredrik Johansson,et al.  Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic , 2016, IEEE Transactions on Computers.