Electrical Conductivity of Carbon Nanotubes: Modeling and Characterization

A short introduction to the electronics properties of carbon nanotubes (CNTs) is given and applied to the analysis of electric conductivity of isolated and bundled CNTs, either single-wall or multi-wall. The model of the electrical conductivity is presented in a wide frequency range, from DC to visible light. In the low-frequency range (up to the THz range), only intraband transitions are considered, whereas for higher frequencies also interband transitions are taken into account. The conductivity model is consistent with the classical Drude model and is able to describe novel phenomena associated with the signal propagation along CNTs, such as plasmon resonances of slow surface waves or intershell tunneling effect.

[1]  A. Rinzler,et al.  Charge dynamics in transparent single-walled carbon nanotube films from optical transmission measurements , 2006 .

[2]  C. Thomsen,et al.  Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment , 2010 .

[3]  R. Martel,et al.  Mechanism of the far-infrared absorption of carbon-nanotube films. , 2008, Physical review letters.

[4]  M. Dresselhaus Carbon nanotubes , 1995 .

[5]  George W. Hanson Fundamental transmitting properties of carbon nanotube antennas , 2005 .

[6]  W. Steinhögl,et al.  Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller , 2005 .

[7]  C. Thomsen,et al.  Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes , 2012 .

[8]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[9]  P. Burke,et al.  Quantitative theory of nanowire and nanotube antenna performance , 2004, IEEE Transactions on Nanotechnology.

[10]  A. Lakhtakia,et al.  Effects of inclusion dimensions and p-type doping in the terahertz spectra of composite materials containing bundles of single-wall carbon nanotubes , 2012 .

[11]  R. R. Hartmann,et al.  Terahertz science and technology of carbon nanomaterials , 2013, Nanotechnology.

[12]  I. Kašalynas,et al.  Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids , 2012, Nanotechnology.

[13]  G. Miano,et al.  Performance Comparison Between Metallic Carbon Nanotube and Copper Nano-Interconnects , 2008, IEEE Transactions on Advanced Packaging.

[14]  A. V. Gusakov,et al.  Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation , 1999 .

[15]  K. Hata,et al.  Length-dependent plasmon resonance in single-walled carbon nanotubes. , 2014, ACS nano.

[16]  Andrew G. Rinzler,et al.  FAR-INFRARED GAPS IN SINGLE-WALL CARBON NANOTUBES , 1999 .

[17]  M. Itkis,et al.  Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes , 2002 .

[18]  Eric Pop,et al.  Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates , 2007 .

[19]  G. Slepyan,et al.  Electrodynamics of carbon nanotubes , 2019, Carbon-Based Nanoelectromagnetics.

[20]  G. Miano,et al.  Signal Propagation in Carbon Nanotubes of Arbitrary Chirality , 2011, IEEE Transactions on Nanotechnology.

[21]  Andrea Gaetano Chiariello,et al.  Circuit Models of Carbon-Based Interconnects for Nanopackaging , 2013, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[22]  Ming-Fa Lin,et al.  Electronic and Optical Properties of Narrow-Gap Carbon Nanotubes , 2002 .

[23]  K. Jeppson,et al.  Through-Silicon Vias Filled With Densified and Transferred Carbon Nanotube Forests , 2012, IEEE Electron Device Letters.

[24]  Akhlesh Lakhtakia,et al.  Electronic and electromagnetic properties of nanotubes , 1998 .

[25]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[26]  A. Maffucci,et al.  On the Evaluation of the Number of Conducting Channels in Multiwall Carbon Nanotubes , 2011, IEEE Transactions on Nanotechnology.

[27]  Joo-Hiuk Son,et al.  Terahertz conductivity of anisotropic single walled carbon nanotube films , 2002 .

[28]  L. Forró,et al.  Evidence of anisotropic metallic behaviour in the optical properties of carbon nanotubes , 1996 .

[29]  M. P. Anantram,et al.  Physics of carbon nanotube electronic devices , 2006 .

[30]  A. Lakhtakia,et al.  Substitutional doping of carbon nanotubes to control their electromagnetic characteristics , 2010 .

[31]  Sheng Wang,et al.  Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V , 2012 .

[32]  Miyamoto,et al.  Chiral conductivities of nanotubes. , 1996, Physical review letters.

[33]  J.E. Morris,et al.  Nanopackaging: Nanotechnologies and electronics packaging , 2006, 2007 International Microsystems, Packaging, Assembly and Circuits Technology.

[34]  A. Lakhtakia,et al.  Nonlinear Electron Transport Effects in a Chiral Carbon Nanotube , 1997 .

[35]  O. Zhou,et al.  Strong Anisotropy in the Far‐Infrared Absorption Spectra of Stretch‐Aligned Single‐Walled Carbon Nanotubes , 2006 .

[36]  C. Xu,et al.  Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status, and Prospects , 2009, IEEE Transactions on Electron Devices.

[37]  Shinobu Fujita,et al.  A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. , 2008, Nano letters.

[38]  J. Kono,et al.  Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. , 2013, Nano letters.

[39]  A. G. Chiariello,et al.  Electrical Modeling of Carbon Nanotube Vias , 2012, IEEE Transactions on Electromagnetic Compatibility.

[40]  J. Meindl,et al.  Performance Modeling for Single- and Multiwall Carbon Nanotubes as Signal and Power Interconnects in Gigascale Systems , 2008, IEEE Transactions on Electron Devices.

[41]  G. Ya. Slepyan,et al.  Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes , 2008, 0806.2958.

[42]  R. Martel,et al.  Carbon nanotube electrodes in organic transistors. , 2013, Nanoscale.

[43]  Akhlesh Lakhtakia,et al.  Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas , 2006 .