Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31

A. Whittemore | L. Kiemeney | M. Pike | M. Beckmann | P. Fasching | R. Vierkant | T. Sellers | G. Coetzee | P. Hall | F. Couch | J. Chang-Claude | H. Noushmehr | S. Chanock | M. García-Closas | B. Fridley | E. Goode | Robert Brown | B. Karlan | N. Le | A. Berchuck | E. Iversen | J. Lancaster | G. Giles | G. Severi | T. Dörk | M. Southey | D. Easton | J. Cheng | P. Pharoah | D. Lambrechts | A. Antoniou | D. Stram | A. Brooks-Wilson | D. Levine | Ya-Yu Tsai | Daniel Vincent | M. Gore | L. Wilkens | P. Hillemanns | X. Shu | Y. Xiang | W. Zheng | A. Ziogas | H. Anton-Culver | R. Glasspool | U. Menon | A. Gentry-Maharaj | K. Aben | J. Gonzalez-Bosquet | D. Eccles | G. Chenevix-Trench | L. Brinton | J. Lissowska | H. Nevanlinna | N. Bogdanova | J. Cunningham | M. Goodman | S. Kjaer | Jie Lin | F. Bacot | D. Tessier | A. Rudolph | S. Nickels | L. Baglietto | A. Ekici | A. Jakubowska | J. Lubiński | N. Antonenkova | K. Matsuo | A. Wu | S. Teo | Q. Cai | J. Tyrer | S. Wang-gohrke | A. Monteiro | S. Gayther | J. Barnholtz-Sloan | D. Cramer | M. Birrer | N. Wentzensen | H. Jim | I. Vergote | R. Sutphen | R. Ness | Hui-Yi Lin | A. Vitonis | S. Olson | H. Risch | G. Bloom | L. Kelemen | S. Narod | Howard C. Shen | K. Odunsi | I. Campbell | I. Runnebaum | I. Orlow | R. Weber | J. Doherty | J. Schildkraut | S. Kaye | K. Moysich | F. Modugno | M. Cicek | F. Kikkawa | K. Lu | J. McLaughlin | H. Salvesen | L. Massuger | Y. Woo | A. V. van Altena | G. Konecny | E. Bandera | M. K. Halle | C. Pearce | J. Flanagan | F. Heitz | P. Harter | A. du Bois | R. Butzow | K. Lawrenson | Hannah P. Yang | V. McGuire | W. Sieh | L. Rodriguez-Rodriguez | M. Rossing | B. Winterhoff | Zhihua Chen | Honglin Song | C. Phelan | A. Jensen | L. Cook | V. Shridhar | J. Gronwald | S. Tworoger | G. Lurie | R. Edwards | E. Høgdall | C. Høgdall | S. Ramus | E. Wik | C. Krakstad | Xiaotao Qu | J. Permuth-Wey | J. Paul | T. Pejović | I. Rzepecka | A. Dansonka-Mieszkowska | J. Kupryjańczyk | B. Górski | E. Despierre | L. Pelttari | S. Armasu | P. Thompson | M. Dürst | S. Hosono | S. Lambrechts | A. Leminen | Dong Liang | B. Lim | E. Poole | I. Schwaab | Y. Shvetsov | B. Śpiewankiewicz | K. Terry | K. Kalli | M. Larson | S. Renner | T. Nakanishi | Rod Karevan | M. Hoatlin | Janet M. Lee | L. Nedergaard | P. Raska | D. Fenstermacher | Y. A. Chen | Aneliya Velkova | N. Lee | Famida Zulkifli | Ya‐Yu Tsai | T. Pejovic

[1]  Brooke L. Fridley,et al.  GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer , 2013, Nature Genetics.

[2]  W. Chung,et al.  Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk , 2013, PLoS genetics.

[3]  Michelle K. Lupton,et al.  Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. , 2012, Human molecular genetics.

[4]  N. Eriksson,et al.  Six Novel Susceptibility Loci for Early-Onset Androgenetic Alopecia and Their Unexpected Association with Common Diseases , 2012, PLoS genetics.

[5]  Nicholas R. Lemoine,et al.  SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012 update) , 2012, Nucleic Acids Res..

[6]  W. Chung,et al.  Common Variants at the 19p13.1 and ZNF365 Loci Are Associated with ER Subtypes of Breast Cancer and Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers , 2012, Cancer Epidemiology, Biomarkers & Prevention.

[7]  J. Marchini,et al.  Genotype Imputation with Thousands of Genomes , 2011, G3: Genes | Genomes | Genetics.

[8]  R. Vierkant,et al.  MicroRNA Processing and Binding Site Polymorphisms Are Not Replicated in the Ovarian Cancer Association Consortium , 2011, Cancer Epidemiology, Biomarkers & Prevention.

[9]  C. Carlson,et al.  Principles for the post-GWAS functional characterization of cancer risk loci , 2011, Nature Genetics.

[10]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[11]  R. Vierkant,et al.  LIN28B polymorphisms influence susceptibility to epithelial ovarian cancer. , 2011, Cancer research.

[12]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[13]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[14]  R. Vierkant,et al.  LIN 28 B Polymorphisms Influence Susceptibility to Epithelial Ovarian Cancer , 2011 .

[15]  Dong Liang,et al.  Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. , 2010, Cancer research.

[16]  T. Noda,et al.  Rubicon and PLEKHM1 Negatively Regulate the Endocytic/Autophagic Pathway via a Novel Rab7-binding Domain , 2010, Molecular biology of the cell.

[17]  A. Whittemore,et al.  A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24 , 2010, Nature Genetics.

[18]  A. Whittemore,et al.  Common variants at 19p13 are associated with susceptibility to ovarian cancer , 2010, Nature Genetics.

[19]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[20]  C. Harris,et al.  Genetic variation in microRNA networks: the implications for cancer research , 2010, Nature Reviews Cancer.

[21]  I. Jacobs,et al.  Senescent fibroblasts promote neoplastic transformation of partially transformed ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. , 2010, Neoplasia.

[22]  P. Morin,et al.  MicroRNAs in ovarian carcinomas. , 2010, Endocrine-related cancer.

[23]  Eden R Martin,et al.  Genome‐Wide Association Study Confirms SNPs in SNCA and the MAPT Region as Common Risk Factors for Parkinson Disease , 2010, Annals of human genetics.

[24]  B. Karlan,et al.  Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. , 2010, Gynecologic oncology.

[25]  W. Wong,et al.  A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2. , 2009, Cancer cell.

[26]  A. Whittemore,et al.  A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2 , 2009, Nature Genetics.

[27]  Brian D Athey,et al.  New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. , 2009, Genome research.

[28]  Jack A. Taylor,et al.  SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies , 2009, Nucleic Acids Res..

[29]  J. Chang-Claude,et al.  Role of genetic polymorphisms and ovarian cancer susceptibility , 2009, Molecular oncology.

[30]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[31]  Muin J. Khoury,et al.  Gene Prospector: An evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases , 2008, BMC Bioinformatics.

[32]  Praveen Sethupathy,et al.  MicroRNA target site polymorphisms and human disease. , 2008, Trends in genetics : TIG.

[33]  R. Tothill,et al.  Novel Molecular Subtypes of Serous and Endometrioid Ovarian Cancer Linked to Clinical Outcome , 2008, Clinical Cancer Research.

[34]  John L Hopper,et al.  Multiple loci with different cancer specificities within the 8q24 gene desert. , 2008, Journal of the National Cancer Institute.

[35]  H. Shill,et al.  Haplotypes and gene expression implicate the MAPT region for Parkinson disease , 2008, Neurology.

[36]  Tian-Li Wang,et al.  MicroRNA Expression and Identification of Putative miRNA Targets in Ovarian Cancer , 2008, PloS one.

[37]  Jae Hoon Kim,et al.  MicroRNA Expression Profiles in Serous Ovarian Carcinoma , 2008, Clinical Cancer Research.

[38]  Anil K Sood,et al.  Early events in the pathogenesis of epithelial ovarian cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[39]  E. Halperin,et al.  Estimating Local Ancestry in Admixed Populations , 2022 .

[40]  Huan Yang,et al.  MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. , 2008, Cancer research.

[41]  A. Dimmler,et al.  The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. , 2008, Cancer research.

[42]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[43]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[44]  Héctor Peinado,et al.  Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? , 2007, Nature Reviews Cancer.

[45]  C. Croce,et al.  MicroRNA signatures in human ovarian cancer. , 2007, Cancer research.

[46]  R. Pfundt,et al.  A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism , 2006, Nature Genetics.

[47]  G. Binetti,et al.  The H2 MAPT haplotype is associated with familial frontotemporal dementia , 2006, Neurobiology of Disease.

[48]  J. Boyd,et al.  Gene Expression Profiles of Serous, Endometrioid, and Clear Cell Subtypes of Ovarian and Endometrial Cancer , 2005, Clinical Cancer Research.

[49]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[50]  H. Stefánsson,et al.  A common inversion under selection in Europeans , 2005, Nature Genetics.

[51]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[52]  M. Katoh,et al.  Identification and characterization of ARHGAP27 gene in silico. , 2004, International journal of molecular medicine.

[53]  T. Tamaya,et al.  Clinical Implications of Expression of ETS-1 Related to Angiogenesis in Metastatic Lesions of Ovarian Cancers , 2004, Oncology.

[54]  M. Mattei,et al.  Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1 , 1992, Molecular and cellular biology.