Geant4 Physics Processes for Microdosimetry Simulation: Design Foundation and Implementation of the First Set of Models

New physical processes specific for microdosimetry simulation are under development in the Geant4 Low Energy Electromagnetic package. The first set of models implemented for this purpose cover the interactions of electrons, protons and light ions in liquid water; they address a physics domain relevant to the simulation of radiation effects in biological systems, where water represents an important component. The design developed for effectively handling particle interactions down to a low energy scale and the physics models implemented in the first public release of the software are described.

[1]  D T Goodhead,et al.  Track structure in radiation biology: theory and applications. , 1998, International journal of radiation biology.

[2]  Victor R. Basili,et al.  Iterative and incremental developments. a brief history , 2003, Computer.

[3]  K. A. Smith,et al.  Charge transfer of 0.5-, 1.5-, and 5-keV protons with H{sub 2}O: Absolute differential and integral cross sections , 1997 .

[4]  D. Goodhead,et al.  Comparison and assessment of electron cross sections for Monte Carlo track structure codes. , 1999, Radiation research.

[5]  C. Champion Multiple ionization of water by heavy ions: a Monte Carlo approach , 2003 .

[6]  Ivar Jacobson,et al.  The Unified Software Development Process , 1999 .

[7]  K. Karava,et al.  Monte Carlo simulation of the energy loss of low-energy electrons in liquid water. , 2003, Physics in medicine and biology.

[8]  Ritsuko Watanabe,et al.  Can Monte Carlo track structure codes reveal reaction mechanism in DNA damage and improve radiation therapy , 2008 .

[9]  R. N. Hamm,et al.  Collective oscillation in liquid water , 1974 .

[10]  P. Rodrigues,et al.  Geant4 low energy electromagnetic physics , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[11]  Petri Kettunen,et al.  How to steer an embedded software project: tactics for selecting the software process model , 2005, Inf. Softw. Technol..

[12]  M. Zaider,et al.  A computationally convenient parameterisation of experimental angular distributions of low energy electrons elastically scattered off water vapour , 1984 .

[13]  A. Kellerer,et al.  Further Development of the Variance-Covariance Method , 1990 .

[14]  Gert Moliere,et al.  Theorie der Streuung schneller geladener Teilchen II Mehrfach-und Vielfachstreuung , 1948 .

[15]  H. Nikjoo Radiation track and DNA damage , 2003 .

[16]  J. Nishimura,et al.  Molière theory of multiple Coulomb scattering with ionization and the transport mechanism of the multiple scattering process. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  J. E. Turner,et al.  Radiation Interactions and Energy Transport in the Condensed Phase , 1991 .

[18]  P. Rettberg Study on the Survivability and Adaptation of Humans to Long-Duration Interplanetary and Planetary Environments WP 4300 Advanced Life Support Development: Environmental Monitoring , 2001 .

[19]  R. Forster,et al.  MCNP™ Version 5 , 2004 .

[20]  Herwig G. Paretzke,et al.  Inelastic-collision cross sections of liquid water for interactions of energetic protons , 2000 .

[21]  M. Zaider,et al.  The application of track calculations to radiobiology. II. Calculations of microdosimetric quantities. , 1984, Radiation research.

[22]  T. Goulet,et al.  Monte Carlo simulation of fast electron and proton tracks in liquid water -- I. physical and physicochemical aspects , 1998 .

[23]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[24]  R. H. Ritchie,et al.  Comparative Study of Electron Energy Deposition and Yields in Water in the Liquid and Vapor Phases , 1982 .

[25]  J. H. Miller,et al.  Proton energy degradation in water vapor. , 1973, Radiation research.

[26]  강문설 [서평]「The Unified Modeling Language User Guide」 , 1999 .

[27]  R. H. Ritchie,et al.  Calculated yields and fluctuations for electron degradation in liquid water and water vapor , 1986 .

[28]  Bundschuh,et al.  Department of Physics , 2005 .

[29]  J. W. Gallagher,et al.  Electron Production in Proton Collisions: Total Cross Sections , 1985 .

[30]  F. A. Smith,et al.  Calculation of initial and primary yields in the radiolysis of water , 1994 .

[31]  Walter Gilbert,et al.  Towards a paradigm shift in biology , 1991, Nature.

[32]  Donald Rapp,et al.  Human Missions to Mars , 2007 .

[33]  V A Semenenko,et al.  NOREC, a Monte Carlo code for simulating electron tracks in liquid water , 2003, Radiation and environmental biophysics.

[34]  Gert Moliere,et al.  Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld , 1947 .

[35]  M. E. Rudd User-friendly model for the energy distribution of electrons from proton or electron collisions , 1989 .

[36]  N. S. Barnett,et al.  Private communication , 1969 .

[37]  Christopher G. Lasater,et al.  Design Patterns , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[38]  D. Emfietzoglou,et al.  An event-by-event computer simulation of interactions of energetic charged particles and all their secondary electrons in water , 2000 .

[39]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[40]  Ian Sommerville,et al.  Capturing the Benefits of Requirements Engineering , 1999, IEEE Softw..

[41]  D. Molina,et al.  A study on the collision of hydrogen ions H1+, H2+ and H3+ with a water-vapour target , 1970 .

[42]  V. Nečas,et al.  Investigation of the electronic energy loss of hydrogen ions in H2O: influence of the state of aggregation , 1994 .

[43]  Hooshang Nikjoo,et al.  The Effect of Model Approximations on Single-Collision Distributions of Low-Energy Electrons in Liquid Water , 2005, Radiation research.

[44]  A. Ferrari,et al.  FLUKA: A Multi-Particle Transport Code , 2005 .

[45]  D. Rogers,et al.  EGS4 code system , 1985 .

[46]  B. Grosswendt,et al.  Transport of low energy electrons in nitrogen and air , 1978 .

[47]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[48]  A. Ferrari,et al.  The physics models of FLUKA: status and recent development , 2003, hep-ph/0306267.

[49]  C. Kao,et al.  Optical spectra of liquid water in vacuum uv region by means of inelastic x-ray scattering spectroscopy , 1998 .

[50]  Andrei Alexandrescu,et al.  Modern C++ Design , 2001 .

[51]  Philippe Kruchten,et al.  What Is the Rational Unified Process ? , 2001 .

[52]  D. Burmistrov,et al.  “Trion” code for radiation action calculations and its application in microdosimetry and radiobiology , 1993, Radiation and environmental biophysics.

[53]  W. E. Wilson,et al.  A Monte Carlo code for positive ion track simulation , 1999, Radiation and environmental biophysics.

[54]  D. Koopman Light-ion charge exchange in atmospheric gases. , 1968 .

[55]  R Gerzer,et al.  HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions, part I: lunar missions. , 2003, Advances in space research : the official journal of the Committee on Space Research.

[56]  W. E. Wilson,et al.  Calculation of Distributions for Energy Imparted and Ionization by Fast Protons in Nanometer Sites , 1981 .

[57]  K. Ogilvie,et al.  Charge Exchange for H+ and H2+ in H2O, CO2, and NH3 , 1970 .

[58]  Marco Zaider,et al.  The Applications of Track Calculations to Radiobiology I. Monte Carlo Simulation of Proton Tracks , 1983 .

[59]  P. Krutchen,et al.  The Rational Unified Process: An Introduction , 2000 .

[60]  J. P. Wellisch,et al.  Hadronic shower models in Geant4 — the frameworks , 2001 .

[61]  Kostas Kostarelos,et al.  A Monte Carlo track structure code for electrons (~10 eV-10 keV) and protons (~0.3-10 MeV) in water: partitioning of energy and collision events , 2000 .

[62]  H. Paretzke,et al.  Comparison of Energy Deposition in Small Cylindrical Volumes by Electrons Generated by Monte Carlo Track Structure Codes for Gaseous and Liquid Water , 1994 .

[63]  Cyril S. Ku,et al.  Design Patterns , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[64]  Stephen J. Hoffman,et al.  Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team , 1997 .

[65]  D. Wright,et al.  Recent developments and validations in Geant4 hadronic physics , 2006 .

[66]  Yoshihito Namito,et al.  The EGS5 code system , 2005 .

[67]  Lindsay,et al.  Charge transfer of 0.5-, 1.5-, and 5-keV protons with atomic oxygen: Absolute differential and integral cross sections. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[68]  John Stuart Lakos,et al.  Large-Scale C++ Software Design , 1996 .

[69]  W. Nelson,et al.  Monte Carlo Transport of Electrons and Photons , 1988 .

[70]  Dudley T. Goodhead,et al.  Cross-sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region , 1993 .

[71]  M. E. Rudd Energy and angular distributions of secondary electrons from 5-100-keV-proton collisions with hydrogen and nitrogen molecules , 1979 .

[72]  Rudd,et al.  Cross sections for ionization of water vapor by 7-4000-keV protons. , 1985, Physical review. A, General physics.

[73]  Marko Moscovitch,et al.  Inelastic collision characteristics of electrons in liquid water , 2002 .

[74]  L. Toburen,et al.  Development of a Monte Carlo track structure code for low-energy protons in water , 2001, International journal of radiation biology.

[75]  Hans A. Bethe,et al.  Moliere's theory of multiple scattering , 1953 .

[76]  L. Toburen,et al.  Measurement of High-Energy Charge-Transfer Cross Sections for Incident Protons and Atomic Hydrogen in Various Gases , 1968 .

[77]  S. Pimblott,et al.  Structure of electron tracks in water. 1. Distribution of energy deposition events , 1990 .

[78]  A. Beaudré,et al.  Simulation of Space and Time Evolution of Radiolytic Species Induced by Electrons in Water , 1990 .

[79]  W. Royce Managing the development of large software systems: concepts and techniques , 2021, ICSE '87.

[80]  J. W. Stearns,et al.  Cross-sections for electron capture by 0.3- to 70-keV deuterons in H2, H2O, CO, CH4 and C8F16 gases , 1970 .

[81]  S. Pimblott,et al.  Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis , 1991 .

[82]  L. Moneta,et al.  Experience with software process in physics projects , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[83]  A. Ito Electron Track Simulation For Microdosimetry , 1988 .