An efficient calibration method for continental‐scale land surface modeling

[1] Land surface models contain physically conceptualized parameters that require calibration for optimal model performance. However, calibration time can be prohibitive. To reduce computational time, we calibrated the VIC land surface model for a subset of the grid cells and then interpolated the parameters to the uncalibrated grid cells. In the continental United States, the “observation” to which we calibrated was the monthly runoff ratio, calculated for 1130 small basins throughout the country and interpolated to those grid cells that did not fall within a small gauged basin. The results demonstrated that this approach is sufficiently accurate and computationally efficient for large-scale applications. We examined the effect of model spatial and temporal resolutions on calibrated parameter sets to evaluate if one could calibrate at coarser resolutions and apply these parameter sets to finer resolutions, reducing computational time. Results indicated that calibrating at different temporal resolutions causes minimal changes in modeled runoff while transferring parameter sets across spatial resolutions can cause significant changes in model performance.

[1]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[2]  George Kuczera,et al.  Calibration of conceptual hydrological models revisited: 2. Improving optimisation and analysis , 2006 .

[3]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[4]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[5]  D. Lettenmaier,et al.  Streamflow simulations of the terrestrial Arctic domain , 2005 .

[6]  J. D. Tarpley,et al.  Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains : GEWEX Continental-Scale International Project, Part 3 (GCIP3) , 2003 .

[7]  Lifeng Luo,et al.  Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System Project , 2004 .

[8]  Matthew F. McCabe,et al.  Calibration of a land surface model using multiple data sets , 2005 .

[9]  Matthew F. McCabe,et al.  Modeling Evapotranspiration during SMACEX: Comparing Two Approaches for Local- and Regional-Scale Prediction , 2005 .

[10]  Lifeng Luo,et al.  Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model‐simulated snow cover extent , 2003 .

[11]  M. Steiner,et al.  Climatology of extreme rainfall and flooding from orographic thunderstorm systems in the upper Arkansas River basin , 2007 .

[12]  George Kuczera,et al.  Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms , 1999 .

[13]  Lifeng Luo,et al.  An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS) , 2003 .

[14]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[15]  Bart Nijssen,et al.  Eegional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model , 1998 .

[16]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[17]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[18]  J. D. Tarpley,et al.  Real‐time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project , 2003 .

[19]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[20]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness , 1983 .

[21]  Soroosh Sorooshian,et al.  Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops , 2006 .

[22]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[23]  E. Wood,et al.  A simulated soil moisture based drought analysis for the United States , 2004 .

[24]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[25]  S. Sorooshian,et al.  A multistep automatic calibration scheme for river forecasting models , 2000 .

[26]  Dennis P. Lettenmaier,et al.  Variable infiltration capacity cold land process model updates , 2003 .

[27]  D. Mocko,et al.  Simulation of high latitude hydrological processes in the Torne-Kalix basin : PILPS phase 2(e) - 2: Comparison of model results with observations , 2003 .

[28]  D. Lettenmaier,et al.  A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States* , 2002 .

[29]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[30]  D. Lettenmaier,et al.  Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification , 1996 .

[31]  W. Crow,et al.  Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals , 2003 .

[32]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[33]  Zong-Liang Yang,et al.  The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment:: 1. Experiment description and summary intercomparisons , 1998 .

[34]  D. Lettenmaier,et al.  Streamflow simulation for continental‐scale river basins , 1997 .

[35]  R. Dickinson,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1993 .