Filaments in observed and mock galaxy catalogues

Context. The main feature of the spatial large-scale galaxy distribution is an intricate network of galaxy filaments. Although many attempts have been made to quantify this network, there is no unique and satisfactory recipe for that yet. Aims. The present paper compares the filaments in the real data and in the numerical models, to see if our best models reproduce statistically the filamentary network of galaxies. Methods. We apply an object point process with interactions (the Bisous process) to trace and describe the filamentary network both in the observed samples (the 2dFGRS catalogue) and in the numerical models that have been prepared to mimic the data. We compare the networks. Results. We find that the properties of filaments in numerical models (mock samples) have a large variance. A few mock samples display filaments that resemble the observed filaments, but usually the model filaments are much shorter and do not form an extended network. Conclusions. We conclude that although we can build numerical models that are similar to observations in many respects, they may fail yet to explain the filamentary structure seen in the data. The Bisous-built filaments are a good test for such a structure.

[1]  M. N. M. van Lieshout,et al.  Perfect simulation for marked point processes , 2006, Comput. Stat. Data Anal..

[2]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[3]  J. E. Forero-Romero,et al.  A Dynamical Classification of the Cosmic Web , 2008, 0809.4135.

[4]  Stéphane Colombi,et al.  The Three-dimensional Skeleton of the SDSS , 2007 .

[5]  Jorge Mateu,et al.  Simulated annealing and object point processes: Tools for analysis of spatial patterns , 2005 .

[6]  Intercluster filaments of galaxies programme: abundance and distribution of filaments in the 2dFGRS catalogue , 2004, astro-ph/0409576.

[7]  S. Colombi,et al.  Skeleton as a probe of the cosmic web : the two-dimensional case , 2003, astro-ph/0307003.

[8]  van Marie-Colette Lieshout,et al.  Markov Point Processes and Their Applications , 2000 .

[9]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The bJ-band galaxy luminosity function and survey selection function , 2001, astro-ph/0111011.

[10]  J. Mateu,et al.  Detection of cosmic filaments using the Candy model , 2004, astro-ph/0405370.

[11]  Rien van de Weygaert,et al.  Spin alignment of dark matter halos in filaments and walls , 2006 .

[12]  Frazer R. Pearce,et al.  Clustering of galaxy clusters in cold dark matter universes: Clustering of galaxy clusters , 2002 .

[13]  A. Pakes,et al.  Properties of residuals for spatial point processes , 2008 .

[14]  J. Barrow,et al.  Minimal spanning trees, filaments and galaxy clustering , 1985 .

[15]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[16]  Stéphane Colombi,et al.  The fully connected N-dimensional skeleton: probing the evolution of the cosmic web , 2008, ArXiv.

[17]  O. Barndorff-Nielsen,et al.  Stochastic Geometry , 1999 .

[18]  H. K. Eriksen,et al.  Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton , 2004 .

[19]  Enn Saar,et al.  Statistics of the Galaxy Distribution , 2001 .

[20]  Frazer R. Pearce,et al.  Clustering of galaxy clusters in CDM universes , 2000 .

[21]  R. Weygaert,et al.  THE SPINE OF THE COSMIC WEB , 2008, 0809.5104.

[22]  J. University,et al.  The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution , 2007, 0705.2072.

[23]  S. van Buuren,et al.  (Eds.). Incomplete data: Multiple imputation and model-based analysis [spec. iss.] , 2003 .

[24]  Christopher J. Fluke,et al.  An Advanced, Three-Dimensional Plotting Library for Astronomy , 2006, Publications of the Astronomical Society of Australia.

[25]  W. Kendall,et al.  Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes , 2000, Advances in Applied Probability.

[26]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[27]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .

[28]  S. Colombi,et al.  The three dimensional skeleton: tracing the filamentary structure of the universe , 2007, 0707.3123.

[29]  Vicent J. Martinez,et al.  A three‐dimensional object point process for detection of cosmic filaments , 2007, 0809.4358.

[30]  K. Pimbblet Pulling Out Threads from the Cosmic Tapestry: Defining Filaments of Galaxies , 2005, Publications of the Astronomical Society of Australia.

[31]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[32]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[33]  E. Branchini,et al.  Tracing the warm-hot intergalactic medium in the local Universe , 2004, astro-ph/0412566.

[34]  M. Drinkwater,et al.  Intercluster filaments of galaxies programme: Pilot study survey and results , 2003, astro-ph/0309216.

[35]  Shaun Cole,et al.  Mock 2dF and SDSS galaxy redshift surveys , 1998 .

[36]  A. Baddeley,et al.  Residual analysis for spatial point processes (with discussion) , 2005 .

[37]  Miguel Angel Aragón Calvo,et al.  Morphology and dynamics of the cosmic web , 2007 .

[38]  The 2dF Galaxy Redshift Survey: Voids and hierarchical scaling models , 2004, astro-ph/0401406.

[39]  A. Finoguenov,et al.  Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223 , 2008, 0803.2525.

[40]  Quantifying cosmic superstructures , 2006, astro-ph/0611641.

[41]  Josiane Zerubia,et al.  A Gibbs Point Process for Road Extraction from Remotely Sensed Images , 2004, International Journal of Computer Vision.

[42]  Josiane Zerubia,et al.  Point processes for unsupervised line network extraction in remote sensing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.