Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method

This study employs the Bayesian Markov Chain Monte Carlo (MCMC) method with the Metropolis–Hastings algorithm and maximum likelihood estimation (MLE) using a quadratic approximation of the likelihood function for the evaluation of uncertainties in low flow frequency analysis using a two-parameter Weibull distribution. The two types of prior distributions, a non-data-based distribution and a data-based distribution using regional information collected from neighbouring stations, are used to establish a posterior distribution. Eight case studies using the synthetic data with a sample size of 100, generated from two-parameter Weibull distribution, are performed to compare with results of analysis using MLE and Bayesian MCMC. Also, Bayesian MCMC and MLE are applied to 36 years of gauged data to validate the efficiency of the developed scheme. These examples illustrate the advantages of Bayesian MCMC and the limitations of MLE based on a quadratic approximation. From the point of view of uncertainty analysis, Bayesian MCMC is more effective than MLE using a quadratic approximation when the sample size is small. In particular, Bayesian MCMC method is more attractive than MLE based on a quadratic approximation because the sample size of low flow at the site of interest is mostly not enough to perform the low flow frequency analysis. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  Eduardo Sávio Passos Rodrigues Martins,et al.  Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation , 2005 .

[2]  Stuart G. Coles,et al.  Bayesian methods in extreme value modelling: a review and new developments. , 1996 .

[3]  Taha B. M. J. Ouarda,et al.  A parametric Bayesian combination of local and regional information in flood frequency analysis , 2006 .

[4]  R. K. Kachroo,et al.  Nonparametric kernel estimation of low flow quantiles , 1996 .

[5]  Henrik Madsen,et al.  PDS-modelling and regional Bayesian estimation of extreme rainfalls , 1994 .

[6]  B. Bates,et al.  A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .

[7]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[8]  George Kuczera,et al.  Comprehensive at‐site flood frequency analysis using Monte Carlo Bayesian inference , 1999 .

[9]  Jacques Bernier,et al.  Bayesian POT modeling for historical data , 2003 .

[10]  Richard M. Vogel,et al.  Generalized low-flow frequency relationships for ungaged sites in Massachusetts. , 1990 .

[11]  F. T. K. Sefe Some aspects of the hydrology of one‐day annual minimum low flows of malawian rivers , 1988 .

[12]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .

[13]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Daniel R. H. O'Connell,et al.  Nonparametric Bayesian flood frequency estimation , 2005 .

[15]  Rao S. Govindaraju,et al.  Prediction of watershed runoff using Bayesian concepts and modular neural networks , 2000 .

[16]  Daniel R. H. O'Connell,et al.  Bayesian flood frequency analysis with paleohydrologic bound data , 2002 .

[17]  Jery R. Stedinger,et al.  Confidence Intervals for Design Events , 1983 .

[18]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .

[19]  G. V. Loganathan,et al.  Frequency Analysis of Low Flows , 1985 .

[20]  Eric F. Wood,et al.  Bayesian inference and decision making for extreme hydrologic events , 1975 .

[21]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[22]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[23]  S. Rocky Durrans,et al.  Low‐flow analysis with a conditional Weibull Tail Model , 1996 .

[24]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[25]  D. M. Ely,et al.  A method for evaluating the importance of system state observations to model predictions, with application to the Death Valley regional groundwater flow system , 2004 .

[26]  W. L. Lane,et al.  Confidence intervals for expected moments algorithm flood quantile estimates , 2001 .

[27]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[28]  Eratakulan S. Joseph Probability Distribution of Annual Droughts , 1970 .

[29]  V. Smakhtin Low flow hydrology: a review , 2001 .

[30]  Jery R. Stedinger,et al.  Bayesian MCMC flood frequency analysis with historical information , 2005 .

[31]  Henrik Madsen,et al.  Generalized least squares and empirical bayes estimation in regional partial duration series index‐flood modeling , 1997 .

[32]  M. Bayazit,et al.  Power Distribution for Low Streamflows , 2001 .

[33]  Guillermo J. Vicens,et al.  A Bayesian framework for the use of regional information in hydrology , 1975 .

[34]  Gary D. Tasker,et al.  A COMPARISON OF METHODS FOR ESTIMATING LOW FLOW CHARACTERISTICS OF STREAMS , 1987 .

[35]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[36]  Ashish Sharma,et al.  A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .

[37]  J. Stedinger,et al.  Flood Frequency Analysis With Historical and Paleoflood Information , 1986 .

[38]  Taha B. M. J. Ouarda,et al.  Approximate Confidence Intervals for Quantiles of Gamma and Generalized Gamma Distributions , 1998 .

[39]  Eric F. Wood,et al.  A Bayesian approach to analyzing uncertainty among flood frequency models , 1975 .

[40]  George Kuczera,et al.  Correlated Rating Curve Error in Flood Frequency Inference , 1996 .

[41]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[42]  T. V. Hromadka,et al.  Approximate confidence intervals for design floods for a single site using a neural network , 1999 .

[43]  Rory Nathan,et al.  PRACTICAL ASPECTS OF LOW-FLOW FREQUENCY-ANALYSIS , 1990 .

[44]  Martin F. Lambert,et al.  Bayesian training of artificial neural networks used for water resources modeling , 2005 .

[45]  Roman Krzysztofowicz,et al.  Probability distributions for flood warning systems , 1994 .

[46]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[47]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[48]  Thomas A. McMahon,et al.  River and Reservoir Yield , 1987 .

[49]  Jery R. Stedinger,et al.  Confidence Interval for Design Floods with Estimated Skew Coefficient , 1991 .

[50]  Roman Krzysztofowicz,et al.  Bayesian theory of probabilistic forecasting via deterministic hydrologic model , 1999 .

[51]  A. Prakash,et al.  Statistical determination of design low flows , 1981 .

[52]  J. Stedinger Frequency analysis of extreme events , 1993 .

[53]  Q. J. Wang A Bayesian Joint Probability Approach for flood record augmentation , 2001 .

[54]  Roman Krzysztofowicz,et al.  A Bayesian Markov Model of the flood forecast process , 1983 .

[55]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[56]  Khaled H. Hamed,et al.  Flood Frequency Analysis , 1999 .