Hermite Functions and Fourier Series
暂无分享,去创建一个
[1] Eigenfunction Expansions and Transformation Theory , 2006, math/0607548.
[2] M. Gadella,et al. Groups, Jacobi functions, and rigged Hilbert spaces , 2019, Journal of Mathematical Physics.
[3] Coherent orthogonal polynomials , 2012, 1205.6353.
[4] Alan V. Oppenheim,et al. Discrete-Time Signal Pro-cessing , 1989 .
[5] Olaf Melsheimer. Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. I. General theory , 1974 .
[6] Theory of Images and Quantum Mechanics, a common paradigm , 2019, Journal of Physics: Conference Series.
[7] J. Zak. Dynamics of Electrons in Solids in External Fields , 1968 .
[8] Jean-Marc Lévy-Leblond,et al. Who is afraid of nonhermitian operators? A quantum description of angle and phase , 1976 .
[9] Jean-Pierre Antoine,et al. Dirac Formalism and Symmetry Problems in Quantum Mechanics. I. General Dirac Formalism , 1969 .
[10] David R. Kincaid,et al. Linear Algebra: Theory and Applications , 2010 .
[11] A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions , 2011, 1107.5858.
[12] G. Lejeune Dirichlet,et al. Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données. , 2022 .
[13] On the Mathematical Basis of the Dirac Formulation of Quantum Mechanics , 2003 .
[14] M. Reed,et al. Fourier Analysis, Self-Adjointness , 1975 .
[15] Angle and Phase Coordinates in Quantum Mechanics , 1969 .
[16] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[17] J. Roberts,et al. Rigged Hilbert spaces in quantum mechanics , 1966 .
[18] A. Córdoba,et al. Dirac combs , 1989 .
[19] M. Gadella,et al. Spherical harmonics and rigged Hilbert spaces. , 2018, 1802.08497.
[20] A. Messiah. Quantum Mechanics , 1961 .
[21] H. Kastrup. Quantization of the canonically conjugate pair angle and orbital angular momentum , 2005, quant-ph/0510234.
[22] W. Cheney,et al. Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .
[23] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[24] Michael Martin Nieto,et al. Phase and Angle Variables in Quantum Mechanics , 1968 .
[25] Lie algebra representations and rigged Hilbert spaces: the SO(2) case , 2017, 1711.03805.
[26] Rigged Hilbert spaces and contractive families of Hilbert spaces , 2011, 1312.1371.
[27] Quantum Physics and Signal Processing in Rigged Hilbert Spaces by means of Special Functions, Lie Algebras and Fourier and Fourier-like Transforms , 2014, 1411.3263.
[28] A. Bohm,et al. The rigged Hilbert space and quantum mechanics , 1978 .
[29] GENERALIZED EIGENVECTORS FOR RESONANCES IN THE FRIEDRICHS MODEL AND THEIR ASSOCIATED GAMOV VECTORS , 2006 .
[30] E. Celeghini. A constructive presentation of rigged Hilbert spaces , 2015, 1502.04891.
[31] A. Janssen. Bargmann transform, Zak transform, and coherent states , 1982 .
[32] Operators in rigged Hilbert spaces: Some spectral properties , 2013, 1309.4038.
[33] E. T. WHITTAKER,et al. Partial Differential Equations of Mathematical Physics , 1932, Nature.
[34] Hayato Chiba. A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions , 2011, 1505.06267.
[35] Mariano A. del Olmo,et al. COHERENT STATES ON THE CIRCLE , 1998 .
[36] Three paths toward the quantum angle operator , 2016, 1602.07319.
[37] L. Schwartz. Théorie des distributions , 1966 .
[38] M. Gadella,et al. Applications of rigged Hilbert spaces in quantum mechanics and signal processing , 2016 .
[39] D. Brandwood. Fourier Transforms in Radar and Signal Processing , 2003 .
[40] J. Horváth. Topological Vector Spaces and Distributions , 2012 .
[41] Balu Santhanam,et al. On discrete Gauss-Hermite functions and eigenvectors of the discrete Fourier transform , 2008, Signal Process..
[42] Mariano A. del Olmo,et al. Zernike functions, rigged Hilbert spaces, and potential applications , 2019, Journal of Mathematical Physics.
[43] J. Gazeau,et al. Quantum localisation on the circle , 2017, 1708.03693.
[44] H. Bateman. Partial Differential Equations of Mathematical Physics , 1932 .
[45] G. Folland. Harmonic analysis in phase space , 1989 .
[46] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[47] Jean-Pierre Antoine,et al. Dirac Formalism and Symmetry Problems in Quantum Mechanics. II. Symmetry Problems , 1969 .
[48] E. Asplund,et al. A First Course in Integration , 1966 .
[49] G. Bachman. Functional Analysis , 1966 .