Hermite Functions and Fourier Series

Using normalized Hermite functions, we construct bases in the space of square integrable functions on the unit circle (L2(C)) and in l2(Z), which are related to each other by means of the Fourier transform and the discrete Fourier transform. These relations are unitary. The construction of orthonormal bases requires the use of the Gramm–Schmidt method. On both spaces, we have provided ladder operators with the same properties as the ladder operators for the one-dimensional quantum oscillator. These operators are linear combinations of some multiplication- and differentiation-like operators that, when applied to periodic functions, preserve periodicity. Finally, we have constructed riggings for both L2(C) and l2(Z), so that all the mentioned operators are continuous.

[1]  Eigenfunction Expansions and Transformation Theory , 2006, math/0607548.

[2]  M. Gadella,et al.  Groups, Jacobi functions, and rigged Hilbert spaces , 2019, Journal of Mathematical Physics.

[3]  Coherent orthogonal polynomials , 2012, 1205.6353.

[4]  Alan V. Oppenheim,et al.  Discrete-Time Signal Pro-cessing , 1989 .

[5]  Olaf Melsheimer Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. I. General theory , 1974 .

[6]  Theory of Images and Quantum Mechanics, a common paradigm , 2019, Journal of Physics: Conference Series.

[7]  J. Zak Dynamics of Electrons in Solids in External Fields , 1968 .

[8]  Jean-Marc Lévy-Leblond,et al.  Who is afraid of nonhermitian operators? A quantum description of angle and phase , 1976 .

[9]  Jean-Pierre Antoine,et al.  Dirac Formalism and Symmetry Problems in Quantum Mechanics. I. General Dirac Formalism , 1969 .

[10]  David R. Kincaid,et al.  Linear Algebra: Theory and Applications , 2010 .

[11]  A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions , 2011, 1107.5858.

[12]  G. Lejeune Dirichlet,et al.  Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données. , 2022 .

[13]  On the Mathematical Basis of the Dirac Formulation of Quantum Mechanics , 2003 .

[14]  M. Reed,et al.  Fourier Analysis, Self-Adjointness , 1975 .

[15]  Angle and Phase Coordinates in Quantum Mechanics , 1969 .

[16]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[17]  J. Roberts,et al.  Rigged Hilbert spaces in quantum mechanics , 1966 .

[18]  A. Córdoba,et al.  Dirac combs , 1989 .

[19]  M. Gadella,et al.  Spherical harmonics and rigged Hilbert spaces. , 2018, 1802.08497.

[20]  A. Messiah Quantum Mechanics , 1961 .

[21]  H. Kastrup Quantization of the canonically conjugate pair angle and orbital angular momentum , 2005, quant-ph/0510234.

[22]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .

[23]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[24]  Michael Martin Nieto,et al.  Phase and Angle Variables in Quantum Mechanics , 1968 .

[25]  Lie algebra representations and rigged Hilbert spaces: the SO(2) case , 2017, 1711.03805.

[26]  Rigged Hilbert spaces and contractive families of Hilbert spaces , 2011, 1312.1371.

[27]  Quantum Physics and Signal Processing in Rigged Hilbert Spaces by means of Special Functions, Lie Algebras and Fourier and Fourier-like Transforms , 2014, 1411.3263.

[28]  A. Bohm,et al.  The rigged Hilbert space and quantum mechanics , 1978 .

[29]  GENERALIZED EIGENVECTORS FOR RESONANCES IN THE FRIEDRICHS MODEL AND THEIR ASSOCIATED GAMOV VECTORS , 2006 .

[30]  E. Celeghini A constructive presentation of rigged Hilbert spaces , 2015, 1502.04891.

[31]  A. Janssen Bargmann transform, Zak transform, and coherent states , 1982 .

[32]  Operators in rigged Hilbert spaces: Some spectral properties , 2013, 1309.4038.

[33]  E. T. WHITTAKER,et al.  Partial Differential Equations of Mathematical Physics , 1932, Nature.

[34]  Hayato Chiba A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions , 2011, 1505.06267.

[35]  Mariano A. del Olmo,et al.  COHERENT STATES ON THE CIRCLE , 1998 .

[36]  Three paths toward the quantum angle operator , 2016, 1602.07319.

[37]  L. Schwartz Théorie des distributions , 1966 .

[38]  M. Gadella,et al.  Applications of rigged Hilbert spaces in quantum mechanics and signal processing , 2016 .

[39]  D. Brandwood Fourier Transforms in Radar and Signal Processing , 2003 .

[40]  J. Horváth Topological Vector Spaces and Distributions , 2012 .

[41]  Balu Santhanam,et al.  On discrete Gauss-Hermite functions and eigenvectors of the discrete Fourier transform , 2008, Signal Process..

[42]  Mariano A. del Olmo,et al.  Zernike functions, rigged Hilbert spaces, and potential applications , 2019, Journal of Mathematical Physics.

[43]  J. Gazeau,et al.  Quantum localisation on the circle , 2017, 1708.03693.

[44]  H. Bateman Partial Differential Equations of Mathematical Physics , 1932 .

[45]  G. Folland Harmonic analysis in phase space , 1989 .

[46]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[47]  Jean-Pierre Antoine,et al.  Dirac Formalism and Symmetry Problems in Quantum Mechanics. II. Symmetry Problems , 1969 .

[48]  E. Asplund,et al.  A First Course in Integration , 1966 .

[49]  G. Bachman Functional Analysis , 1966 .