Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard

Abstract For the materials with constant thermophysical properties, the thermal performance of wallboards (or floor, ceiling) can be described by decrement factor f and time lag φ. However, the phase change material (PCM) may charge large heat during the melting process and discharge large heat during the freezing process, which takes place at some certain temperature or a narrow temperature range. The behavior deviates a lot from the material with constant thermal physical properties. Therefore, it is not reasonable to analyze the thermal performance of PCM wallboard by using the decrement factor f and time lag φ. How to simply and effectively analyze the thermal performance of a PCM wallboard is an important problem. In order to analyze and evaluate the energy-efficient effects of the PCM wallboard and floor, two new parameters, i.e., modifying factor of the inner surface heat flux ‘α’ and ratio of the thermal storage ‘b’, are put forward. They can describe the thermal performance of PCM external and internal walls, respectively. The analysis and simulation methods are both applied to investigate the effects of different PCM thermophysical properties (heat of fusion Hm, melting temperature Tm and thermal conductivity k) on the thermal performance of PCM wallboard for the residential buildings. The results show that the PCM external wall can save more energy by increasing Hm, decreasing k and selecting proper Tm (α