Duality between static spherically or hyperbolically symmetric solutions and cosmological solutions in scalar-tensor gravity

We study static spherically and hyperbolically symmetric solutions of the Einstein equations in the presence of a conformally coupled scalar field and compare them with those in the space filled with a minimally coupled scalar field. We then study the Kantowski-Sachs cosmological solutions, which are connected with the static solutions by the duality relations. The main ingredient of these relations is an exchange of roles between the radial and the temporal coordinates, combined with the exchange between the spherical and hyperbolical two-dimensional geometries. A brief discussion of questions such as the relation between the Jordan and the Einstein frames and the description of the singularity crossing is also presented.

[1]  85 , 2018, The Devil's Fork.

[2]  K. Bronnikov Scalar fields as sources for wormholes and regular black holes , 2018, 1802.00098.

[3]  G. Venturi,et al.  Induced gravity and minimally and conformally coupled scalar fields in Bianchi-I cosmological models , 2017, 1710.02681.

[4]  Damon Afkari,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? 30 ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2011 .

[5]  G. Venturi,et al.  Bianchi-I cosmological model and crossing singularities , 2017, 1702.02314.

[6]  K. Bronnikov,et al.  On Black Hole Structures in Scalar-Tensor Theories of Gravity , 2016, 1603.03692.

[7]  G. Venturi,et al.  Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities , 2016, 1602.07192.

[8]  G. Venturi,et al.  Interdependence between integrable cosmological models with minimal and non-minimal coupling , 2015, 1509.00590.

[9]  M. Sasaki,et al.  Conformal frame dependence of inflation , 2015, 1501.07699.

[10]  M. Saal,et al.  Invariant quantities in the scalar-tensor theories of gravitation , 2014, 1411.1947.

[11]  A. Kamenshchik,et al.  Question of quantum equivalence between Jordan frame and Einstein frame , 2014, 1408.5769.

[12]  G. Calcagni,et al.  Quantum cosmological consistency condition for inflation , 2014, 1405.6541.

[13]  P. Prester Field redefinitions, Weyl invariance and the nature of mavericks , 2014, 1405.1941.

[14]  Y. Obukhov,et al.  Equations of motion in scalar-tensor theories of gravity: A covariant multipolar approach , 2014, 1404.6977.

[15]  P. Steinhardt,et al.  Sailing through the big crunch-big bang transition , 2013, 1312.0739.

[16]  W. Chemissany,et al.  Journeys through antigravity? , 2013, 1311.3671.

[17]  Andrei Linde,et al.  Hidden superconformal symmetry of the cosmological evolution , 2013, 1311.3326.

[18]  C. Wetterich Variable gravity Universe , 2013, 1308.1019.

[19]  G. Venturi,et al.  Integrable cosmological models with non-minimally coupled scalar fields , 2013, 1312.3540.

[20]  X. Calmet,et al.  FRAME TRANSFORMATIONS OF GRAVITATIONAL THEORIES , 2012, 1211.4217.

[21]  P. Steinhardt,et al.  Antigravity and the big crunch/big bang transition , 2011, 1112.2470.

[22]  A. Starobinsky,et al.  Higgs boson, renormalization group, and naturalness in cosmology , 2009, 0910.1041.

[23]  A. Kamenshchik,et al.  One-loop divergences for gravity nonminimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results , 2011, 1101.5047.

[24]  M. Shaposhnikov,et al.  Higgs inflation: consistency and generalisations , 2010, 1008.5157.

[25]  V. Gorini,et al.  Dark matter effects in vacuum spacetime , 2010, 1006.4059.

[26]  S. Capozziello,et al.  Physical non-equivalence of the Jordan and Einstein frames , 2010, 1003.5394.

[27]  A. Starobinsky,et al.  Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field , 2009, 0904.1698.

[28]  F. Wilczek,et al.  Running inflation in the Standard Model , 2008, 0812.4946.

[29]  M. Shaposhnikov,et al.  Standard Model Higgs boson mass from inflation , 2008, 0812.4950.

[30]  A. Starobinsky,et al.  Inflation scenario via the Standard Model Higgs boson and LHC , 2008, 0809.2104.

[31]  D. Blaschke,et al.  Conformal transformations and conformal invariance in gravitation , 2008, 0806.2683.

[32]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[33]  K. Bronnikov,et al.  No realistic wormholes from ghost-free scalar-tensor phantom dark energy , 2006, gr-qc/0612032.

[34]  R. Catena,et al.  Einstein and Jordan frames reconciled: A frame-invariant approach to scalar-tensor cosmology , 2006, astro-ph/0604492.

[35]  K. Bronnikov,et al.  Cold Black Holes and Conformal Continuations , 2006, gr-qc/0609084.

[36]  M. Gaudin,et al.  GRAVITY OF A STATIC MASSLESS SCALAR FIELD AND A LIMITING SCHWARZSCHILD-LIKE GEOMETRY , 2005, gr-qc/0512122.

[37]  V. Ivashchuk,et al.  Cosmological solutions in multidimensional model with multiple exponential potential , 2003, hep-th/0308113.

[38]  M. MacCallum,et al.  Exact Solutions of Einstein's Field Equations: List of tables , 2003 .

[39]  K. Bronnikov Scalar-tensor gravity and conformal continuations , 2002, gr-qc/0204001.

[40]  M. Visser,et al.  Scalar fields, energy conditions and traversable wormholes , 2000, gr-qc/0003025.

[41]  Einstein Frame or Jordan Frame? , 1999, astro-ph/9910176.

[42]  M. Visser,et al.  TRAVERSABLE WORMHOLES FROM MASSLESS CONFORMALLY COUPLED SCALAR FIELDS , 1999, gr-qc/9908029.

[43]  A. Harvey Will the real Kasner metric please stand up , 1990 .

[44]  Xanthopoulos,et al.  Einstein gravity coupled to a massless scalar field in arbitrary spacetime dimensions. , 1989, Physical review. D, Particles and fields.

[45]  A. Agnese,et al.  Gravitation without black holes. , 1985 .

[46]  M. Wyman Static spherically symmetric scalar fields in general relativity , 1981 .

[47]  S. Orlov,et al.  Nonsingular cosmology as a quantum vacuum effect , 1979 .

[48]  V. Mostepanenko,et al.  Breaking of conformal symmetry and quantization in curved spacetime , 1978 .

[49]  V. Mostepanenko,et al.  Conformal symmetry breaking and quantization in curved space-time , 1978 .

[50]  J. Bekenstein Nonsingular general-relativistic cosmologies , 1975 .

[51]  R. Wagoner Scalar-Tensor Theory and Gravitational Waves , 1970 .

[52]  J. Winicour,et al.  COMMENTS ON EINSTEIN SCALAR SOLUTIONS. , 1969 .

[53]  J. Winicour,et al.  Reality of the Schwarzschild Singularity , 1968 .

[54]  R. Sachs,et al.  SOME SPATIALLY HOMOGENEOUS ANISOTROPIC RELATIVISTIC COSMOLOGICAL MODELS , 1966 .

[55]  I. Khalatnikov,et al.  Investigations in relativistic cosmology , 1963 .

[56]  R. Dicke,et al.  Mach's principle and a relativistic theory of gravitation , 1961 .

[57]  B. Kent Harrison,et al.  Exact Three-Variable Solutions of the Field Equations of General Relativity , 1959 .

[58]  R. Leipnik,et al.  Space-Time Structure of a Static Spherically Symmetric Scalar Field , 1957 .

[59]  I. Z. Fisher Scalar mesostatic field with regard for gravitational effects , 1999, gr-qc/9911008.

[60]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[61]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .

[62]  E. Kasner Geometrical theorems on Einstein's cosmological equations , 1921 .