An intensity-modulated photocurrent spectroscopy study of the charge carrier dynamics of WO3/BiVO4 heterojunction systems

[1]  G. Cerullo,et al.  In Operando Photoelectrochemical Femtosecond Transient Absorption Spectroscopy of WO3/BiVO4 Heterojunctions , 2019, ACS Energy Letters.

[2]  G. Oskam,et al.  Photoelectrochemical water oxidation at FTO|WO3@CuWO4 and FTO|WO3@CuWO4|BiVO4 heterojunction systems: An IMPS analysis , 2019, Electrochimica Acta.

[3]  J. Hofmann,et al.  Elucidating the electronic structure of CuWO4 thin films for enhanced photoelectrochemical water splitting , 2019, Journal of Materials Chemistry A.

[4]  K. Yubuta,et al.  Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode , 2019, Applied Catalysis B: Environmental.

[5]  S. Gupta,et al.  Enhanced Photoelectrochemical Water Splitting with Er- and W-Codoped Bismuth Vanadate with WO3 Heterojunction-Based Two-Dimensional Photoelectrode. , 2019, ACS applied materials & interfaces.

[6]  F. Abdi,et al.  Cu:NiO as a hole-selective back contact to improve the photoelectrochemical performance of CuBi2O4 thin film photocathodes , 2019, Journal of Materials Chemistry A.

[7]  H. Fan,et al.  Reducing the surface recombination during light-driven water oxidation by core-shell BiVO4@Ni:FeOOH , 2019, Electrochimica Acta.

[8]  Liang Yao,et al.  Insights into the interfacial carrier behaviour of copper ferrite (CuFe2O4) photoanodes for solar water oxidation , 2019, Journal of Materials Chemistry A.

[9]  C. Blackman,et al.  WO3/BiVO4: impact of charge separation at the timescale of water oxidation† †Electronic supplementary information (ESI) available: Including XRD, SEM, UV-visible absorption, current–voltage curves, IPCEs, additional TAS and TPC data, and EIS. See DOI: 10.1039/c8sc04679d , 2019, Chemical science.

[10]  L. Peter Photoelectrochemical Kinetics: Hydrogen Evolution on p-Type Semiconductors , 2019, Journal of The Electrochemical Society.

[11]  N. Harrison,et al.  Beyond band bending in the WO3/BiVO4 heterojunction: insight from DFT and experiment , 2019, Sustainable Energy & Fuels.

[12]  A. Kudo,et al.  The role of surface states during photocurrent switching: Intensity modulated photocurrent spectroscopy analysis of BiVO4 photoelectrodes , 2018, Applied Catalysis B: Environmental.

[13]  B. Parkinson,et al.  Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi2O4 Electrodes for Photoelectrochemical Water Splitting , 2018, The Journal of Physical Chemistry C.

[14]  Dino Klotz,et al.  Two-site H2O2 photo-oxidation on haematite photoanodes , 2018, Nature Communications.

[15]  M. Pisarek,et al.  Enhanced Photocatalytic Water Splitting on Very Thin WO3 Films Activated by High-Temperature Annealing , 2018, ACS Catalysis.

[16]  M. Abdellah,et al.  Photoinduced Charge-Transfer Dynamics in WO3/BiVO4 Photoanodes Probed through Midinfrared Transient Absorption Spectroscopy. , 2018, Journal of the American Chemical Society.

[17]  Qunjie Xu,et al.  Serial hole transfer layers for a BiVO4 photoanode with enhanced photoelectrochemical water splitting. , 2018, Nanoscale.

[18]  Bonamali Pal,et al.  Photodeposition of Ag and Cu binary co-catalyst onto TiO2 for improved optical and photocatalytic degradation properties , 2018, Advanced Powder Technology.

[19]  E. Chan,et al.  Electrochemically-synthesized tungstate nanocomposites γ-WO3/CuWO4 and γ-WO3/NiWO4 thin films with improved band gap and photoactivity for solar-driven photoelectrochemical water oxidation , 2018, Journal of Alloys and Compounds.

[20]  H. Seo,et al.  Recent developments in photoelectrochemical water-splitting using WO 3 /BiVO 4 heterojunction photoanode: A review , 2018, Materials Science for Energy Technologies.

[21]  Zhifeng Liu,et al.  Flake-like NiO/WO 3 p-n heterojunction photocathode for photoelectrochemical water splitting , 2018 .

[22]  Elena Selli,et al.  Photoactivity and Stability of WO3/BiVO4 Photoanodes: Effects of the Contact Electrolyte and of Ni/Fe Oxyhydroxide Protection , 2018 .

[23]  Rong Huang,et al.  Microstructure evolution determined by the crystalline phases competition in self-assembled WO3-BiVO4 hetero nanostructures , 2018 .

[24]  Lei Wang,et al.  Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation. , 2018, Angewandte Chemie.

[25]  K. Kim,et al.  1-D WO3@BiVO4 heterojunctions with highly enhanced photoelectrochemical performance , 2018 .

[26]  G. Oskam,et al.  Charge transfer and recombination kinetics at WO3 for photoelectrochemical water oxidation , 2017 .

[27]  Z. Mi,et al.  Understanding the role of co-catalysts on silicon photocathodes using intensity modulated photocurrent spectroscopy. , 2017, Physical chemistry chemical physics : PCCP.

[28]  Jie Li,et al.  An in situ transformation approach for fabrication of BiVO4/WO3 heterojunction photoanode with high photoelectrochemical activity , 2017 .

[29]  B. Koopmans,et al.  Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes , 2017 .

[30]  Hyunwoong Park,et al.  Ultra-efficient and durable photoelectrochemical water oxidation using elaborately designed hematite nanorod arrays , 2017 .

[31]  T. Leichtweiss,et al.  Electrospun CuO Nanofibers: Stable Nanostructures for Solar Water Splitting , 2017 .

[32]  Roel van de Krol,et al.  Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films , 2017 .

[33]  G. Sivakumar,et al.  Preparation of Bifunctional CuWO4-Based Heterostructure Nanocomposites for Noble-Metal-Free Photocatalysts , 2017 .

[34]  Yun Jeong Hwang,et al.  Insight into Charge Separation in WO3/BiVO4 Heterojunction for Solar Water Splitting. , 2017, ACS applied materials & interfaces.

[35]  Kevin G. Stamplecoskie,et al.  Wavelength-Dependent Ultrafast Charge Carrier Separation in the WO3/BiVO4 Coupled System , 2017 .

[36]  G. Dalapati,et al.  Morphologically tailored CuO photocathode using aqueous solution technique for enhanced visible light driven water splitting , 2017 .

[37]  I. Parkin,et al.  Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition , 2017 .

[38]  R. van de Krol,et al.  Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis , 2017, Chemical science.

[39]  A. Fujishima,et al.  WO3/W:BiVO4/BiVO4 graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. , 2017, Physical chemistry chemical physics : PCCP.

[40]  Seong‐Hyeon Hong,et al.  p-Type CuBi2O4 thin films prepared by flux-mediated one-pot solution process with improved structural and photoelectrochemical characteristics , 2017 .

[41]  Zhifeng Liu,et al.  Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting , 2017 .

[42]  Thomas W. Hamann,et al.  Quantitative hole collection for photoelectrochemical water oxidation with CuWO4. , 2017, Chemical communications.

[43]  Mingtao Li,et al.  Enhanced Photoelectrochemical Performance of the BiVO4/Zn:BiVO4 Homojunction for Water Oxidation , 2016 .

[44]  Shaohua Shen,et al.  Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics , 2016 .

[45]  N. Russo,et al.  Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis , 2016 .

[46]  F. Toma,et al.  Role of Hydrogen in Defining the n-Type Character of BiVO4 Photoanodes , 2016 .

[47]  Changli Li,et al.  Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers , 2016 .

[48]  T. Sritharan,et al.  Improved Charge Separation in WO3/CuWO4 Composite Photoanodes for Photoelectrochemical Water Oxidation , 2016, Materials.

[49]  G. Oskam,et al.  Defects in Porous Networks of WO3 Particle Aggregates , 2016 .

[50]  P. Strasser,et al.  Dynamical changes of a Ni-Fe oxide water splitting catalyst investigated at different pH , 2016 .

[51]  Liejin Guo,et al.  Comparison of sandwich and fingers-crossing type WO3/BiVO4 multilayer heterojunctions for photoelectrochemical water oxidation , 2016 .

[52]  Zhiliang Wang,et al.  Substrate-Electrode Interface Engineering by an Electron-Transport Layer in Hematite Photoanode. , 2016, ACS applied materials & interfaces.

[53]  Thomas W. Hamann,et al.  Atomic layer stack deposition-annealing synthesis of CuWO4 , 2016 .

[54]  H. Cachet,et al.  Kinetics of Water Oxidation at TiO2 Nanotube Arrays at Different pH Domains Investigated by Electrochemical and Light-Modulated Impedance Spectroscopy , 2015 .

[55]  Prashant V. Kamat,et al.  Dynamics of Photogenerated Charge Carriers in WO3/BiVO4 Heterojunction Photoanodes , 2015 .

[56]  M. Marelli,et al.  α-Fe2O3/NiOOH: An Effective Heterostructure for Photoelectrochemical Water Oxidation , 2015 .

[57]  Y. Ghayeb,et al.  Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing , 2015 .

[58]  K. Hsiao,et al.  Composition optimization of ZnO-based photocatalyst arrays by scanning electrochemical microscopy and the characterization of efficient photocatalysts , 2015 .

[59]  Liejin Guo,et al.  Fabrication and properties of a branched (NH₄)xWO₃ nanowire array film and a porous WO3 nanorod array film. , 2015, ACS applied materials & interfaces.

[60]  L. Nadjia,et al.  Preparation and characterization of novel CuBi2O4/SnO2 p–n heterojunction with enhanced photocatalytic performance under UVA light irradiation , 2015 .

[61]  J. S. Lee,et al.  BiVO 4 -Based Heterostructured Photocatalysts for Solar Water Splitting: A Review , 2014 .

[62]  T. Bein,et al.  Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes. , 2014, Physical chemistry chemical physics : PCCP.

[63]  S. Jiao,et al.  High-performance p-Cu2O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting , 2014 .

[64]  Chong‐Yong Lee,et al.  Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation. , 2014, Physical chemistry chemical physics : PCCP.

[65]  Shahzad Ahmad,et al.  Elucidating Transport-Recombination Mechanisms in Perovskite Solar Cells by Small-Perturbation Techniques , 2014 .

[66]  G. Oskam,et al.  Photoelectrochemical water oxidation at electrophoretically deposited WO3 films as a function of crystal structure and morphology , 2014 .

[67]  L. Peter,et al.  Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[68]  Yoshio Nosaka,et al.  Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production , 2014 .

[69]  Kyoung-Shin Choi,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting , 2014, Science.

[70]  T. Tachikawa,et al.  Efficient charge separation and photooxidation on cobalt phosphate-loaded TiO2 mesocrystal superstructures , 2014 .

[71]  Kai Zhu,et al.  Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport. , 2014, Physical chemistry chemical physics : PCCP.

[72]  B. Bartlett,et al.  Reactivity of CuWO4 in Photoelectrochemical Water Oxidation Is Dictated by a Midgap Electronic State , 2013 .

[73]  Joel W. Ager,et al.  Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting , 2013 .

[74]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[75]  Bart M. Bartlett,et al.  Chemical Stability of CuWO4 for Photoelectrochemical Water Oxidation , 2013 .

[76]  Juan Bisquert,et al.  Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes , 2012 .

[77]  Roel van de Krol,et al.  Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO4 Photoanodes , 2012 .

[78]  Peng Wang,et al.  Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy , 2012 .

[79]  K. Wijayantha,et al.  Kinetics of light-driven oxygen evolution at alpha-Fe2O3 electrodes. , 2012, Faraday discussions.

[80]  D. Gamelin,et al.  Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4. , 2011, Journal of the American Chemical Society.

[81]  Jae Sung Lee,et al.  Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation , 2011 .

[82]  Liejin Guo,et al.  Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting. , 2011, Nano letters.

[83]  L. Peter,et al.  Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[84]  R. Beranek (Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials , 2011 .

[85]  J. S. Lee,et al.  Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems , 2009 .

[86]  Arnold J. Forman,et al.  Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting , 2008 .

[87]  J. Augustynski,et al.  Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. , 2001, Journal of the American Chemical Society.

[88]  D. Fermín,et al.  A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy , 1999 .

[89]  D. Fermín,et al.  Intensity-modulated photocurrent spectroscopy: Reconciliation of phenomenological analysis with multistep electron transfer mechanisms , 1997 .

[90]  E. A. Ponomarev,et al.  A generalized theory of intensity modulated photocurrent spectroscopy (IMPS) , 1995 .

[91]  L. Peter,et al.  Frequency response analysis of intensity modulated photocurrents at semiconductor electrodes , 1990 .

[92]  Akira Fujishima,et al.  Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis , 1971 .

[93]  R PLUTCHIK,et al.  Skin Impedance and Phase Angle as a Function of Frequency and Current , 1963, Science.