VVV-WIT-01: highly obscured classical nova or protostellar collision?

A search of the first Data Release of the VISTA Variables in the Via Lactea (VVV) Survey discovered the exceptionally red transient VVV-WIT-01 (H − Ks = 5.2). It peaked before March 2010, then faded by ∼9.5 mag over the following 2 yr. The 1.6–22 μm spectral energy distribution in March 2010 was well fit by a highly obscured blackbody with T ∼ 1000 K and $A_{K_s} \sim 6.6$ mag. The source is projected against the Infrared Dark Cloud (IRDC) SDC G331.062−0.294. The chance projection probability is small for any single event (p ≈ 0.01–0.02), which suggests a physical association, e.g. a collision between low mass protostars. However, blackbody emission at T ∼ 1000 K is common in classical novae (especially CO novae) at the infrared peak in the light curve due to condensation of dust ∼30–60 d after the explosion. Radio follow-up with the Australia Telescope Compact Array detected a fading continuum source with properties consistent with a classical nova but probably inconsistent with colliding protostars. Considering all VVV transients that could have been projected against a catalogued IRDC raises the probability of a chance association to p = 0.13–0.24. After weighing several options, it appears likely that VVV-WIT-01 was a classical nova event located behind an IRDC.

[1]  T. Matheson,et al.  The Spatially Resolved Bipolar Nebula of Sakurai’s Object. II. Mapping the Planetary Nebula Expansion , 2014, The Astrophysical Journal.

[2]  I. Hachisu,et al.  A Light-curve Analysis of 32 Recent Galactic Novae: Distances and White Dwarf Masses , 2019, The Astrophysical Journal Supplement Series.

[3]  D. A. Kann,et al.  The evolution of luminous red nova AT 2017jfs in NGC 4470 , 2019, Astronomy & Astrophysics.

[4]  B. Fields,et al.  Using gamma ray monitoring to avoid missing the next Milky Way Type Ia supernova , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  M. Catelán,et al.  Milky Way demographics with the VVV survey , 2018, Astronomy & Astrophysics.

[6]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[7]  R. Kuiper,et al.  First hydrodynamics simulations of radiation forces and photoionization feedback in massive star formation , 2018, Astronomy & Astrophysics.

[8]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[9]  Geneva,et al.  Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment , 2018, 1804.04682.

[10]  N. Peretto,et al.  Gravity drives the evolution of infrared dark hubs: JVLA observations of SDC13 , 2018, 1801.07253.

[11]  K. Schawinski,et al.  The 105-Month Swift-BAT All-sky Hard X-Ray Survey , 2018, 1801.01882.

[12]  D. Lang,et al.  Time-resolved WISE/NEOWISE Coadds , 2017, The Astronomical Journal.

[13]  J. Prieto,et al.  A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray-luminous Classical Nova to Date , 2017, 1701.03094.

[14]  M. Catelán,et al.  Extinction Ratios in the Inner Galaxy as Revealed by the VVV Survey , 2017, 1710.04854.

[15]  P. Lucas,et al.  Extreme infrared variables from UKIDSS – II. An end-of-survey catalogue of eruptive YSOs and unusual stars , 2017, 1708.02680.

[16]  A. Ginsburg,et al.  The ALMA View of the OMC1 Explosion in Orion , 2017, 1701.01906.

[17]  P. Lucas,et al.  A population of eruptive variable protostars in VVV , 2016, 1602.06267.

[18]  M. Miville-Deschênes,et al.  PHYSICAL PROPERTIES OF MOLECULAR CLOUDS FOR THE ENTIRE MILKY WAY DISK , 2016, 1610.05918.

[19]  N. Peretto,et al.  The initial conditions for stellar protocluster formation. III The Herschel counterparts of the Spitzer Dark Cloud catalogue , 2016, 1602.03234.

[20]  W. Vacca,et al.  THE EARLY INFRARED TEMPORAL DEVELOPMENT OF NOVA DELPHINI 2013 (V339 DEL) OBSERVED WITH THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY (SOFIA) AND FROM THE GROUND , 2015 .

[21]  J. Osborne Getting to know classical novae with Swift , 2015, 1507.02153.

[22]  M. Bonn,et al.  Post-outburst spectra of a stellar-merger remnant of V1309 Scorpii: from a twin of V838 Monocerotis to a clone of V4332 Sagittarii , 2015, 1504.03421.

[23]  M. Burlak,et al.  UBVJHKLM Photometry and Low-Resolution Spectroscopy of Nova Delphini 2013 (V339 Del) , 2015 .

[24]  Wei Wang,et al.  SN2014J gamma rays from the 56Ni decay chain , 2014, 1409.5477.

[25]  Richard Bennett,et al.  The Visible and Infrared Survey Telescope for Astronomy (VISTA): Design, technical overview, and performance , 2014, 1409.4780.

[26]  X. Koenig,et al.  A CLASSIFICATION SCHEME FOR YOUNG STELLAR OBJECTS USING THE WIDE-FIELD INFRARED SURVEY EXPLORER AllWISE CATALOG: REVEALING LOW-DENSITY STAR FORMATION IN THE OUTER GALAXY , 2014, 1407.2262.

[27]  T. O. S. University,et al.  Stellar mergers are common , 2014, 1405.1042.

[28]  H. J. Farnhill,et al.  The VST Photometric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS , 2014, 1402.7024.

[29]  S. Aarseth,et al.  Pre-Mainsequence Stellar Evolution in N-Body Models , 2014, Publications of the Astronomical Society of Australia.

[30]  Marc Audard,et al.  Episodic Accretion in Young Stars , 2014, 1401.3368.

[31]  D. Thompson,et al.  THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY , 2013, 1304.6082.

[32]  N. Peretto,et al.  Global collapse of molecular clouds as a formation mechanism for the most massive stars , 2013, 1307.2590.

[33]  O. Chesneau,et al.  EVOLUTION OF THE 1919 EJECTA OF V605 AQUILAE, , 2013, 1305.6563.

[34]  Gregory J. Herczeg,et al.  CONTINUUM VARIABILITY OF DEEPLY EMBEDDED PROTOSTARS AS A PROBE OF ENVELOPE STRUCTURE , 2013, 1301.7341.

[35]  I. Bonnell,et al.  Primordial triples and collisions of massive stars , 2013, 1301.6959.

[36]  S. M'esz'aros,et al.  Exploring the circumstellar environment of the young eruptive star V2492 Cygni , 2013, 1301.0898.

[37]  Keith T. Noddle,et al.  The VISTA Science Archive , 2012, 1210.2980.

[38]  H. Bond,et al.  The Stony Brook/SMARTS Atlas of (mostly) Southern Novae , 2012, 1209.1583.

[39]  J. Dickey,et al.  KINEMATIC DISTANCE ASSIGNMENTS WITH H i ABSORPTION , 2012 .

[40]  Germany,et al.  INTEGRAL/IBIS nine-year Galactic hard X-ray survey , 2012, 1205.3941.

[41]  Dominic J. Benford,et al.  Explanatory Supplement to the WISE All-Sky Data Release Products , 2012, WISE 2012.

[42]  S. Kendrew,et al.  The Milky Way Project First Data Release: a bubblier Galactic disc , 2012, 1201.6357.

[43]  R. de Grijs,et al.  Vvv dr1: the first data release of the milky way bulge and southern plane from the near-infrared eso public survey vista variables in the via lactea , 2011, 1111.5511.

[44]  J. R. Hubbard,et al.  ANTARES: the first undersea neutrino telescope , 2011 .

[45]  S. Goodwin,et al.  Collisions in young triple systems , 2011, 1109.4420.

[46]  A. Collaboration ANTARES: The first undersea neutrino telescope , 2011, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[47]  K. Ulaczyk,et al.  V1309 Scorpii: merger of a contact binary , 2010, 1012.0163.

[48]  R. Klessen,et al.  The role of stellar collisions for the formation of massive stars , 2010, 1009.1189.

[49]  T. Henning,et al.  CIRCUMVENTING THE RADIATION PRESSURE BARRIER IN THE FORMATION OF MASSIVE STARS VIA DISK ACCRETION , 2010, 1008.4516.

[50]  T. Plewa,et al.  Probing thermonuclear supernova explosions with neutrinos , 2010, 1006.0490.

[51]  M. Sauvage,et al.  Clouds, filaments, and protostars: TheHerschel Hi-GAL Milky Way , 2010, 1005.3317.

[52]  Adam A. Miller,et al.  PTF 10fqs: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99 , 2010, 1005.1455.

[53]  Arne A. Henden,et al.  CATALOG OF 93 NOVA LIGHT CURVES: CLASSIFICATION AND PROPERTIES , 2010, 1004.3698.

[54]  T. Henning,et al.  Fast and accurate frequency-dependent radiation transport for hydrodynamics simulations in massive star formation , 2010, 1001.3301.

[55]  R. de Grijs,et al.  VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way , 2009, 0912.1056.

[56]  K. Menten,et al.  The Formation of Massive Stars , 1998, Proceedings of the International Astronomical Union.

[57]  N. Peretto,et al.  The initial conditions of stellar protocluster formation - I. A catalogue of Spitzer dark clouds , 2009, 0906.3493.

[58]  P. Myers FILAMENTARY STRUCTURE OF STAR-FORMING COMPLEXES , 2009, 0906.2005.

[59]  G. Fazio,et al.  A SPITZER SURVEY OF YOUNG STELLAR CLUSTERS WITHIN ONE KILOPARSEC OF THE SUN: CLUSTER CORE EXTRACTION AND BASIC STRUCTURAL ANALYSIS , 2009, 0906.0201.

[60]  M. Gromadzki,et al.  KECK/HIRES SPECTROSCOPY OF V838 MONOCEROTIS IN OCTOBER 2005 , 2008, 0812.4213.

[61]  K. Borkowski,et al.  The Youngest Galactic Supernova Remnant: G1.9+0.3 , 2008, 0803.1487.

[62]  Kaspar von Braun,et al.  UNCLOAKING GLOBULAR CLUSTERS IN THE INNER GALAXY , 2007, 1111.5628.

[63]  J. Rathborne,et al.  The Characterization and Galactic Distribution of Infrared Dark Clouds , 2006 .

[64]  C. Woodward,et al.  The Spitzer Infrared Spectrometer view of V4334 Sgr (Sakurai's Object) , 2006, astro-ph/0609083.

[65]  I. Hachisu,et al.  A Universal Decline Law of Classical Novae , 2006, astro-ph/0607609.

[66]  N. Soker,et al.  Violent stellar merger model for transient events , 2006, astro-ph/0606467.

[67]  M. Davies,et al.  Collisions and close encounters involving massive main-sequence stars , 2006, astro-ph/0602042.

[68]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[69]  R. T. Soker Eruptions of the V838 Mon type: stellar merger versus nuclear outburst models , 2005, astro-ph/0509379.

[70]  D. Padgett,et al.  MIPSGAL: A Survey of the Inner Galactic Plane at 24 and 70 μm , 2005 .

[71]  S. Kimeswenger,et al.  The Real-Time Stellar Evolution of Sakurai's Object , 2005, Science.

[72]  A. Sills,et al.  Simulations of Stellar Collisions Involving Pre-Main-Sequence Stars , 2005, astro-ph/0503449.

[73]  J. Bally,et al.  The Birth of High-Mass Stars: Accretion and/or Mergers? , 2005, astro-ph/0502485.

[74]  James P. Emerson,et al.  VISTA data flow system: pipeline processing for WFCAM and VISTA , 2004, SPIE Astronomical Telescopes + Instrumentation.

[75]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[76]  L. Allen,et al.  Initial Results from the Spitzer Young Stellar Cluster Survey , 2004, astro-ph/0406008.

[77]  R. Indebetouw,et al.  GLIMPSE. I. An SIRTF Legacy Project to Map the Inner Galaxy , 2003, astro-ph/0306274.

[78]  B. Leibundgut,et al.  Optical Light Curves of Supernovae , 2003, astro-ph/0304112.

[79]  B. Viren,et al.  The Super-Kamiokande detector , 2003 .

[80]  N. M. Nagar,et al.  The infrared supernova rate in starburst galaxies , 2003, astro-ph/0302323.

[81]  Titus J. Galama,et al.  Supernovae and gamma-Ray Bursters , 2003 .

[82]  José Salgado,et al.  Nuclear Instruments and Methods , 2003 .

[83]  A. Cabrera-Lavers,et al.  Old stellar Galactic disc in near-plane regions according to 2MASS: Scales, cut-off, flare and warp , 2002, astro-ph/0208236.

[84]  R. Joyce,et al.  Infrared Observations of the Final Flash Stars V4334 Sgr and V605 Aql , 2002 .

[85]  Michael M. Shara Stellar Collisions, Mergers and Their Consequences , 2002 .

[86]  Chemical evolution of the Milky Way , 2001 .

[87]  Leif J. Robinson,et al.  SNEWS: the SuperNova Early Warning System , 1999, astro-ph/9911359.

[88]  W. Meikle The absolute infrared magnitudes of type ia supernovae , 1999, astro-ph/9912123.

[89]  A. Tomaney,et al.  Nova Sagittarii 1994 1 (V4332 Sagittarii): The Discovery and Evolution of an Unusual Luminous Red Variable Star , 1999, astro-ph/9905016.

[90]  R. Gehrz Infrared studies of classical novae and their contributions to the ISM , 1999 .

[91]  Martin G. Cohen,et al.  A Population of Cold Cores in the Galactic Plane , 1998 .

[92]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[93]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[94]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[95]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[96]  K. Weiler,et al.  Supernovae and Supernova Remnants , 1988 .

[97]  Robert D. Gehrz,et al.  The Infrared Temporal Development of Classical Novae , 1988 .

[98]  Brian Warner,et al.  Absolute magnitudes of cataclysmic variables , 1987 .

[99]  B. Shustov Protostars and Planets II , 1987 .

[100]  K. Sellgren,et al.  The optically thin dust shell of Nova Cygni 1978 , 1980 .

[101]  J. Hackwell,et al.  The evolution of the dust shell of Nova Serpentis 1978 , 1980 .

[102]  R. Hjellming,et al.  Radio emission from nova shells , 1979 .